» Articles » PMID: 37118103

Engineering of Stimuli-responsive Lipid-bilayer Membranes Using Supramolecular Systems

Overview
Journal Nat Rev Chem
Publisher Springer Nature
Specialty Chemistry
Date 2023 Apr 28
PMID 37118103
Authors
Affiliations
Soon will be listed here.
Abstract

The membrane proteins found in nature control many important cellular functions, including signal transduction and transmembrane ion transport, and these, in turn, are regulated by external stimuli, such as small molecules, membrane potential and light. Membrane proteins also find technological applications in fields ranging from optogenetics to synthetic biology. Synthetic supramolecular analogues have emerged as a complementary method to engineer functional membranes. This Review describes stimuli-responsive supramolecular systems developed for the control of ion transport, signal transduction and catalysis in lipid-bilayer-membrane systems. Recent advances towards achieving spatio-temporal control over activity in artificial and living cells are highlighted. Current challenges, the scope, limitations and future potential to exploit supramolecular systems for engineering stimuli-responsive lipid-bilayer membranes are discussed.

Citing Articles

Rotaxanes with a photoresponsive macrocycle modulate the lipid bilayers of large and giant unilamellar vesicles.

Conthagamage U, Rajeshwar T R, van der Ham S, Akhtar N, Davis M, Jayawardana S Commun Chem. 2024; 7(1):255.

PMID: 39516242 PMC: 11549230. DOI: 10.1038/s42004-024-01343-8.


Generating synthetic gap junctions using supramolecular amphiphilic giant nanotubes.

Kohata A, Kinbara K Nat Chem. 2024; 16(9):1387-1389.

PMID: 39164582 DOI: 10.1038/s41557-024-01604-y.


Ion carrier modulated MRI contrast.

Duncan A, Ellis C, Levingston H, Kerckhoffs A, Mozes F, Langton M Chem Sci. 2024; .

PMID: 39129769 PMC: 11310829. DOI: 10.1039/d3sc03466f.


Constructing artificial gap junctions to mediate intercellular signal and mass transport.

Fu Y, Hu Y, Lin T, Zhuang G, Wang Y, Chen W Nat Chem. 2024; 16(9):1418-1426.

PMID: 38658798 DOI: 10.1038/s41557-024-01519-8.


Rectifying artificial nanochannels with multiple interconvertible permeability states.

Qian R, Wu M, Yang Z, Wu Y, Guo W, Zhou Z Nat Commun. 2024; 15(1):2051.

PMID: 38448408 PMC: 10918189. DOI: 10.1038/s41467-024-46312-w.


References
1.
Hauser A, Chavali S, Masuho I, Jahn L, Martemyanov K, Gloriam D . Pharmacogenomics of GPCR Drug Targets. Cell. 2017; 172(1-2):41-54.e19. PMC: 5766829. DOI: 10.1016/j.cell.2017.11.033. View

2.
Miesenbock G . Optogenetic control of cells and circuits. Annu Rev Cell Dev Biol. 2011; 27:731-58. PMC: 3759011. DOI: 10.1146/annurev-cellbio-100109-104051. View

3.
Branton D, Deamer D, Marziali A, Bayley H, Benner S, Butler T . The potential and challenges of nanopore sequencing. Nat Biotechnol. 2008; 26(10):1146-53. PMC: 2683588. DOI: 10.1038/nbt.1495. View

4.
Villar G, Graham A, Bayley H . A tissue-like printed material. Science. 2013; 340(6128):48-52. PMC: 3750497. DOI: 10.1126/science.1229495. View

5.
Elani Y, Law R, Ces O . Vesicle-based artificial cells as chemical microreactors with spatially segregated reaction pathways. Nat Commun. 2014; 5:5305. DOI: 10.1038/ncomms6305. View