» Articles » PMID: 18846088

The Potential and Challenges of Nanopore Sequencing

Abstract

A nanopore-based device provides single-molecule detection and analytical capabilities that are achieved by electrophoretically driving molecules in solution through a nano-scale pore. The nanopore provides a highly confined space within which single nucleic acid polymers can be analyzed at high throughput by one of a variety of means, and the perfect processivity that can be enforced in a narrow pore ensures that the native order of the nucleobases in a polynucleotide is reflected in the sequence of signals that is detected. Kilobase length polymers (single-stranded genomic DNA or RNA) or small molecules (e.g., nucleosides) can be identified and characterized without amplification or labeling, a unique analytical capability that makes inexpensive, rapid DNA sequencing a possibility. Further research and development to overcome current challenges to nanopore identification of each successive nucleotide in a DNA strand offers the prospect of 'third generation' instruments that will sequence a diploid mammalian genome for approximately $1,000 in approximately 24 h.

Citing Articles

Harnessing ferroptosis for precision oncology: challenges and prospects.

Fernandez-Acosta R, Vintea I, Koeken I, Hassannia B, Vanden Berghe T BMC Biol. 2025; 23(1):57.

PMID: 39988655 PMC: 11849278. DOI: 10.1186/s12915-025-02154-6.


The Research Progress of Single-Molecule Sequencing and Its Significance in Nucleic Acid Metrology.

Wang Y, Liu J, Wang Z, Zhang M, Zhang Y Biosensors (Basel). 2025; 15(1).

PMID: 39852055 PMC: 11763189. DOI: 10.3390/bios15010004.


Direct observation of small molecule activator binding to single PR65 protein.

Yang-Schulz A, Zacharopoulou M, Yilmaz S, Banerjee A, Saha S, Nietlispach D NPJ Biosens. 2025; 2(1):2.

PMID: 39830999 PMC: 11738983. DOI: 10.1038/s44328-024-00018-7.


Rumen DNA virome and its relationship with feed efficiency in dairy cows.

Liu X, Tang Y, Chen H, Liu J, Sun H Microbiome. 2025; 13(1):14.

PMID: 39819730 PMC: 11740651. DOI: 10.1186/s40168-024-02019-0.


Unlocking the Potential of Metagenomics with the PacBio High-Fidelity Sequencing Technology.

Han Y, He J, Li M, Peng Y, Jiang H, Zhao J Microorganisms. 2025; 12(12.

PMID: 39770685 PMC: 11728442. DOI: 10.3390/microorganisms12122482.


References
1.
Jett J, Keller R, Martin J, Marrone B, Moyzis R, RATLIFF R . High-speed DNA sequencing: an approach based upon fluorescence detection of single molecules. J Biomol Struct Dyn. 1989; 7(2):301-9. DOI: 10.1080/07391102.1989.10507773. View

2.
Zhang X, Krstic P, Zikic R, Wells J, Fuentes-Cabrera M . First-principles transversal DNA conductance deconstructed. Biophys J. 2006; 91(1):L04-6. PMC: 1479083. DOI: 10.1529/biophysj.106.085548. View

3.
Li J, Stein D, McMullan C, Branton D, Aziz M, Golovchenko J . Ion-beam sculpting at nanometre length scales. Nature. 2001; 412(6843):166-9. DOI: 10.1038/35084037. View

4.
Mathe J, Aksimentiev A, Nelson D, Schulten K, Meller A . Orientation discrimination of single-stranded DNA inside the alpha-hemolysin membrane channel. Proc Natl Acad Sci U S A. 2005; 102(35):12377-82. PMC: 1194911. DOI: 10.1073/pnas.0502947102. View

5.
Fologea D, Gershow M, Ledden B, McNabb D, Golovchenko J, Li J . Detecting single stranded DNA with a solid state nanopore. Nano Lett. 2005; 5(10):1905-9. PMC: 2543124. DOI: 10.1021/nl051199m. View