Feedback Regulation of Pancreatic Enzyme Secretion. Suppression of Cholecystokinin Release by Trypsin
Overview
Affiliations
Feedback regulation of pancreatic enzyme secretion occurs in rats. Whether such a system exists in man remains unsettled and the responsible mechanism is unknown. To investigate this question gastrointestinal intubation and perfusion were performed in 12 healthy subjects. Intraduodenal perfusion of trypsin-inhibited phenylalanine-, oleic acid-, and meal-stimulated chymotrypsin and lipase outputs in a dose-related manner. The minimal concentration of bovine trypsin needed to inhibit pancreatic enzyme secretion was 0.5 g/liter. 1 g/liter caused a maximal suppression of 35 +/- 4% of the phenylalanine-stimulated chymotrypsin release. This inhibitory effect was protease-specific. Intraduodenal perfusion of phenylalanine and oleic acid increased plasma cholecystokinin (CCK) from a basal level of 0.9 +/- 0.06 to 5.3 +/- 0.9 pM and 7.2 +/- 1.3 pM, respectively. Addition of bovine trypsin to the perfusates significantly reduced the plasma CCK level to basal values. This inhibitory effect of trypsin on CCK release was dose dependent and specific to proteases. Therefore, the present studies indicate that feedback regulation of pancreatic enzyme secretion is operative in man and it is mediated by release of CCK.
Basal pancreatic secretion in a comparative aspect in poultry and rodents.
Kuzmina I, Tolpygo S, Kotov A, Shoibonov B, Zamolodchikova T Front Physiol. 2024; 15:1340130.
PMID: 38559574 PMC: 10978773. DOI: 10.3389/fphys.2024.1340130.
Freeman A, Ng K, Wang F, Abu-El-Haija M, Chugh A, Cress G Am J Gastroenterol. 2024; 119(10):2094-2102.
PMID: 38517077 PMC: 11452285. DOI: 10.14309/ajg.0000000000002772.
Freeman A, Maqbool A, Bellin M, Goldschneider K, Grover A, Hartzell C J Pediatr Gastroenterol Nutr. 2020; 72(2):324-340.
PMID: 33230082 PMC: 8054312. DOI: 10.1097/MPG.0000000000003001.
Rational Use of Pancreatic Enzymes for Pancreatic Insufficiency and Pancreatic Pain.
Ketwaroo G, Graham D Adv Exp Med Biol. 2019; 1148:323-343.
PMID: 31482505 PMC: 6913179. DOI: 10.1007/978-981-13-7709-9_14.
Plasmid DNA nicking- a Novel Activity of Soybean Trypsin Inhibitor and Bovine Aprotinin.
Islam M, Ihenacho K, Park J, Islam I Sci Rep. 2019; 9(1):11596.
PMID: 31406183 PMC: 6690959. DOI: 10.1038/s41598-019-48068-6.