» Articles » PMID: 37098063

Parvalbumin Interneuron Activity Drives Fast Inhibition-induced Vasoconstriction Followed by Slow Substance P-mediated Vasodilation

Overview
Specialty Science
Date 2023 Apr 25
PMID 37098063
Authors
Affiliations
Soon will be listed here.
Abstract

The role of parvalbumin (PV) interneurons in vascular control is poorly understood. Here, we investigated the hemodynamic responses elicited by optogenetic stimulation of PV interneurons using electrophysiology, functional magnetic resonance imaging (fMRI), wide-field optical imaging (OIS), and pharmacological applications. As a control, forepaw stimulation was used. Stimulation of PV interneurons in the somatosensory cortex evoked a biphasic fMRI response in the photostimulation site and negative fMRI signals in projection regions. Activation of PV neurons engaged two separable neurovascular mechanisms in the stimulation site. First, an early vasoconstrictive response caused by the PV-driven inhibition is sensitive to the brain state affected by anesthesia or wakefulness. Second, a later ultraslow vasodilation lasting a minute is closely dependent on the sum of interneuron multiunit activities, but is not due to increased metabolism, neural or vascular rebound, or increased glial activity. The ultraslow response is mediated by neuropeptide substance P (SP) released from PV neurons under anesthesia, but disappears during wakefulness, suggesting that SP signaling is important for vascular regulation during sleep. Our findings provide a comprehensive perspective about the role of PV neurons in controlling the vascular response.

Citing Articles

Type-I nNOS neurons orchestrate cortical neural activity and vasomotion.

Turner K, Turner K, Brockway D, Brockway D, Hossain M, Griffith K bioRxiv. 2025; .

PMID: 39896560 PMC: 11785022. DOI: 10.1101/2025.01.21.634042.


Correlation of zero echo time functional MRI with neuronal activity in rats.

Valjakka J, Paasonen J, Salo R, Paasonen E, Stenroos P, Gureviciene I J Cereb Blood Flow Metab. 2025; 271678X251314682.

PMID: 39846159 PMC: 11758440. DOI: 10.1177/0271678X251314682.


Elucidating hemodynamics and neuro-glio-vascular signaling using rodent fMRI.

Zhou X, Jiang Y, Gomez-Cid L, Yu X Trends Neurosci. 2025; 48(3):227-241.

PMID: 39843335 PMC: 11903151. DOI: 10.1016/j.tins.2024.12.010.


Tonic and burst-like locus coeruleus stimulation distinctly shift network activity across the cortical hierarchy.

Grimm C, Duss S, Privitera M, Munn B, Karalis N, Frassle S Nat Neurosci. 2024; 27(11):2167-2177.

PMID: 39284964 PMC: 11537968. DOI: 10.1038/s41593-024-01755-8.


Neuromodulation in Small Animal fMRI.

Hsu L, Shih Y J Magn Reson Imaging. 2024; 61(4):1597-1617.

PMID: 39279265 PMC: 11903207. DOI: 10.1002/jmri.29575.


References
1.
Logothetis N . What we can do and what we cannot do with fMRI. Nature. 2008; 453(7197):869-78. DOI: 10.1038/nature06976. View

2.
Richards C . Anaesthetic modulation of synaptic transmission in the mammalian CNS. Br J Anaesth. 2002; 89(1):79-90. DOI: 10.1093/bja/aef162. View

3.
Masamoto K, Fukuda M, Vazquez A, Kim S . Dose-dependent effect of isoflurane on neurovascular coupling in rat cerebral cortex. Eur J Neurosci. 2009; 30(2):242-50. PMC: 2767262. DOI: 10.1111/j.1460-9568.2009.06812.x. View

4.
Karagiannis A, Gallopin T, David C, Battaglia D, Geoffroy H, Rossier J . Classification of NPY-expressing neocortical interneurons. J Neurosci. 2009; 29(11):3642-59. PMC: 2750888. DOI: 10.1523/JNEUROSCI.0058-09.2009. View

5.
van Alst T, Wachsmuth L, Datunashvili M, Albers F, Just N, Budde T . Anesthesia differentially modulates neuronal and vascular contributions to the BOLD signal. Neuroimage. 2019; 195:89-103. DOI: 10.1016/j.neuroimage.2019.03.057. View