» Articles » PMID: 37083953

Probing the Pathogenicity of Patient-derived Variants of MT-ATP6 in Yeast

Overview
Journal Dis Model Mech
Specialty General Medicine
Date 2023 Apr 21
PMID 37083953
Authors
Affiliations
Soon will be listed here.
Abstract

The list of mitochondrial DNA (mtDNA) variants detected in individuals with neurodegenerative diseases is constantly growing. Evaluating their functional consequences and pathogenicity is not easy, especially when they are found in only a limited number of patients together with wild-type mtDNA (heteroplasmy). Owing to its amenability to mitochondrial genetic transformation and incapacity to stably maintain heteroplasmy, and the strong evolutionary conservation of the proteins encoded in mitochondria, Saccharomyces cerevisiae provides a convenient model to investigate the functional consequences of human mtDNA variants. We herein report the construction and energy-transducing properties of yeast models of eight MT-ATP6 gene variants identified in patients with various disorders: m.8843T>C, m.8950G>A, m.9016A>G, m.9025G>A, m.9029A>G, m.9058A>G, m.9139G>A and m.9160T>C. Significant defect in growth dependent on respiration and deficits in ATP production were observed in yeast models of m.8950G>A, m.9025G>A and m.9029A>G, providing evidence of pathogenicity for these variants. Yeast models of the five other variants showed very mild, if any, effect on mitochondrial function, suggesting that the variants do not have, at least alone, the potential to compromise human health.

Citing Articles

The landscape of rare mitochondrial DNA variants in sudden cardiac death: A potential role for ATP synthase.

Luppi E, De Luise M, Bini C, Pelletti G, Tioli G, Kurelac I Heliyon. 2025; 11(1):e41592.

PMID: 39866453 PMC: 11759642. DOI: 10.1016/j.heliyon.2024.e41592.


Disease models of Leigh syndrome: From yeast to organoids.

Henke M, Prigione A, Schuelke M J Inherit Metab Dis. 2024; 47(6):1292-1321.

PMID: 39385390 PMC: 11586605. DOI: 10.1002/jimd.12804.


Leber's hereditary optic neuropathy like disease in variant m.8969G>A.

de Muijnck C, van Schooneveld M, Plomp A, Rodenburg R, van Genderen M, Boon C Am J Ophthalmol Case Rep. 2024; 34:102070.

PMID: 38756953 PMC: 11096717. DOI: 10.1016/j.ajoc.2024.102070.


Differential Mitochondrial Genome Expression of Three Sympatric Lizards in Response to Low-Temperature Stress.

He J, Zhan L, Meng S, Wang Z, Gao L, Wang W Animals (Basel). 2024; 14(8).

PMID: 38672309 PMC: 11047653. DOI: 10.3390/ani14081158.


Variants in Human ATP Synthase Mitochondrial Genes: Biochemical Dysfunctions, Associated Diseases, and Therapies.

Del Dotto V, Musiani F, Baracca A, Solaini G Int J Mol Sci. 2024; 25(4).

PMID: 38396915 PMC: 10889682. DOI: 10.3390/ijms25042239.


References
1.
Kabala A, Lasserre J, Ackerman S, di Rago J, Kucharczyk R . Defining the impact on yeast ATP synthase of two pathogenic human mitochondrial DNA mutations, T9185C and T9191C. Biochimie. 2013; 100:200-6. DOI: 10.1016/j.biochi.2013.11.024. View

2.
Ju Y, Alexandrov L, Gerstung M, Martincorena I, Nik-Zainal S, Ramakrishna M . Origins and functional consequences of somatic mitochondrial DNA mutations in human cancer. Elife. 2014; 3. PMC: 4371858. DOI: 10.7554/eLife.02935. View

3.
Dautant A, Meier T, Hahn A, Tribouillard-Tanvier D, di Rago J, Kucharczyk R . ATP Synthase Diseases of Mitochondrial Genetic Origin. Front Physiol. 2018; 9:329. PMC: 5893901. DOI: 10.3389/fphys.2018.00329. View

4.
Ueno H, Nishigaki Y, Kong Q, Fuku N, Kojima S, Iwata N . Analysis of mitochondrial DNA variants in Japanese patients with schizophrenia. Mitochondrion. 2009; 9(6):385-93. DOI: 10.1016/j.mito.2009.06.003. View

5.
Duvezin-Caubet S, Rak M, Lefebvre-Legendre L, Tetaud E, Bonnefoy N, di Rago J . A "petite obligate" mutant of Saccharomyces cerevisiae: functional mtDNA is lethal in cells lacking the delta subunit of mitochondrial F1-ATPase. J Biol Chem. 2006; 281(24):16305-13. DOI: 10.1074/jbc.M513805200. View