» Articles » PMID: 37078688

Decoding CRISPR-Cas PAM Recognition with UniDesign

Overview
Journal Brief Bioinform
Specialty Biology
Date 2023 Apr 20
PMID 37078688
Authors
Affiliations
Soon will be listed here.
Abstract

The critical first step in Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR)-associated (CRISPR-Cas) protein-mediated gene editing is recognizing a preferred protospacer adjacent motif (PAM) on target DNAs by the protein's PAM-interacting amino acids (PIAAs). Thus, accurate computational modeling of PAM recognition is useful in assisting CRISPR-Cas engineering to relax or tighten PAM requirements for subsequent applications. Here, we describe a universal computational protein design framework (UniDesign) for designing protein-nucleic acid interactions. As a proof of concept, we applied UniDesign to decode the PAM-PIAA interactions for eight Cas9 and two Cas12a proteins. We show that, given native PIAAs, the UniDesign-predicted PAMs are largely identical to the natural PAMs of all Cas proteins. In turn, given natural PAMs, the computationally redesigned PIAA residues largely recapitulated the native PIAAs (74% and 86% in terms of identity and similarity, respectively). These results demonstrate that UniDesign faithfully captures the mutual preference between natural PAMs and native PIAAs, suggesting it is a useful tool for engineering CRISPR-Cas and other nucleic acid-interacting proteins. UniDesign is open-sourced at https://github.com/tommyhuangthu/UniDesign.

Citing Articles

Engineering of CRISPR-Cas PAM recognition using deep learning of vast evolutionary data.

Nayfach S, Bhatnagar A, Novichkov A, Estevam G, Kim N, Hill E bioRxiv. 2025; .

PMID: 39829748 PMC: 11741284. DOI: 10.1101/2025.01.06.631536.


AlPaCas: allele-specific CRISPR gene editing through a protospacer-adjacent-motif (PAM) approach.

Rosignoli S, Lustrino E, Conci A, Fabrizi A, Rinaldo S, Latella M Nucleic Acids Res. 2024; 52(W1):W29-W38.

PMID: 38795068 PMC: 11223865. DOI: 10.1093/nar/gkae419.


The Versatile Biocatalyst of Cytochrome P450 CYP102A1: Structure, Function, and Engineering.

Sun Y, Huang X, Osawa Y, Chen Y, Zhang H Molecules. 2023; 28(14).

PMID: 37513226 PMC: 10383305. DOI: 10.3390/molecules28145353.

References
1.
Hirano S, Abudayyeh O, Gootenberg J, Horii T, Ishitani R, Hatada I . Structural basis for the promiscuous PAM recognition by Corynebacterium diphtheriae Cas9. Nat Commun. 2019; 10(1):1968. PMC: 6488586. DOI: 10.1038/s41467-019-09741-6. View

2.
Case D, Cheatham 3rd T, Darden T, Gohlke H, Luo R, Merz Jr K . The Amber biomolecular simulation programs. J Comput Chem. 2005; 26(16):1668-88. PMC: 1989667. DOI: 10.1002/jcc.20290. View

3.
Huang X, Pearce R, Zhang Y . design of protein peptides to block association of the SARS-CoV-2 spike protein with human ACE2. Aging (Albany NY). 2020; 12(12):11263-11276. PMC: 7343451. DOI: 10.18632/aging.103416. View

4.
Kleinstiver B, Prew M, Tsai S, Nguyen N, Topkar V, Zheng Z . Broadening the targeting range of Staphylococcus aureus CRISPR-Cas9 by modifying PAM recognition. Nat Biotechnol. 2015; 33(12):1293-1298. PMC: 4689141. DOI: 10.1038/nbt.3404. View

5.
Leaver-Fay A, Tyka M, Lewis S, Lange O, Thompson J, Jacak R . ROSETTA3: an object-oriented software suite for the simulation and design of macromolecules. Methods Enzymol. 2010; 487:545-74. PMC: 4083816. DOI: 10.1016/B978-0-12-381270-4.00019-6. View