» Articles » PMID: 37067905

METTL3-Mediated M6A Modification Controls Splicing Factor Abundance and Contributes to Aggressive CLL

Abstract

Significance: METTL3 controls widespread splicing factor abundance via translational control of m6A-modified mRNA, contributes to RNA splicing dysregulation and disease progression in CLL, and serves as a potential therapeutic target in aggressive CLL. See related commentary by Janin and Esteller, p. 176. This article is highlighted in the In This Issue feature, p. 171.

Citing Articles

CircMVP promotes METTL3 activation mediated CTNNB1 m6A modification in the inhibition of colorectal cancer in B7-H3 dependence antitumor immunity.

Wang F, Wang Q, Wu Y, Huang Z, Zhong X, Wang H Int J Biol Sci. 2025; 21(1):306-327.

PMID: 39744434 PMC: 11667818. DOI: 10.7150/ijbs.105324.


Global transcriptome modulation by xenobiotics: the role of alternative splicing in adaptive responses to chemical exposures.

Annalora A, Coburn J, Jozic A, Iversen P, Marcus C Hum Genomics. 2024; 18(1):127.

PMID: 39558396 PMC: 11572221. DOI: 10.1186/s40246-024-00694-6.


mA modification of mutant huntingtin RNA promotes the biogenesis of pathogenic huntingtin transcripts.

Pupak A, Rodriguez-Navarro I, Sathasivam K, Singh A, Essmann A, Del Toro D EMBO Rep. 2024; 25(11):5026-5052.

PMID: 39394467 PMC: 11549361. DOI: 10.1038/s44319-024-00283-7.


The role of m6A-associated membraneless organelles in the RNA metabolism processes and human diseases.

Bu F, Wang H, Xu C, Song K, Dai Z, Wang L Theranostics. 2024; 14(12):4683-4700.

PMID: 39239525 PMC: 11373618. DOI: 10.7150/thno.99019.


Integrative Analysis of Multi-Omics Data to Identify Deregulated Molecular Pathways and Druggable Targets in Chronic Lymphocytic Leukemia.

Mavridou D, Psatha K, Aivaliotis M J Pers Med. 2024; 14(8).

PMID: 39202022 PMC: 11355716. DOI: 10.3390/jpm14080831.


References
1.
Obeng E, Chappell R, Seiler M, Chen M, Campagna D, Schmidt P . Physiologic Expression of Sf3b1(K700E) Causes Impaired Erythropoiesis, Aberrant Splicing, and Sensitivity to Therapeutic Spliceosome Modulation. Cancer Cell. 2016; 30(3):404-417. PMC: 5023069. DOI: 10.1016/j.ccell.2016.08.006. View

2.
Furney S, Pedersen M, Gentien D, Dumont A, Rapinat A, Desjardins L . SF3B1 mutations are associated with alternative splicing in uveal melanoma. Cancer Discov. 2013; 3(10):1122-1129. PMC: 5321577. DOI: 10.1158/2159-8290.CD-13-0330. View

3.
Amin E, Oltean S, Hua J, Gammons M, Hamdollah-Zadeh M, Welsh G . WT1 mutants reveal SRPK1 to be a downstream angiogenesis target by altering VEGF splicing. Cancer Cell. 2011; 20(6):768-80. PMC: 3574979. DOI: 10.1016/j.ccr.2011.10.016. View

4.
Xiao W, Adhikari S, Dahal U, Chen Y, Hao Y, Sun B . Nuclear m(6)A Reader YTHDC1 Regulates mRNA Splicing. Mol Cell. 2016; 61(4):507-519. DOI: 10.1016/j.molcel.2016.01.012. View

5.
Imataka H, Gradi A, Sonenberg N . A newly identified N-terminal amino acid sequence of human eIF4G binds poly(A)-binding protein and functions in poly(A)-dependent translation. EMBO J. 1998; 17(24):7480-9. PMC: 1171091. DOI: 10.1093/emboj/17.24.7480. View