» Articles » PMID: 37056142

Reperfusion After Hypoxia-ischemia Exacerbates Brain Injury with Compensatory Activation of the Anti- Ferroptosis System: Based on a Novel Rat Model

Overview
Date 2023 Apr 14
PMID 37056142
Authors
Affiliations
Soon will be listed here.
Abstract

Hypoxic-ischemic encephalopathy, which predisposes to neonatal death and neurological sequelae, has a high morbidity, but there is still a lack of effective prevention and treatment in clinical practice. To better understand the pathophysiological mechanism underlying hypoxic-ischemic encephalopathy, in this study we compared hypoxic-ischemic reperfusion brain injury and simple hypoxic-ischemic brain injury in neonatal rats. First, based on the conventional Rice-Vannucci model of hypoxic-ischemic encephalopathy, we established a rat model of hypoxic-ischemic reperfusion brain injury by creating a common carotid artery muscle bridge. Then we performed tandem mass tag-based proteomic analysis to identify differentially expressed proteins between the hypoxic-ischemic reperfusion brain injury model and the conventional Rice-Vannucci model and found that the majority were mitochondrial proteins. We also performed transmission electron microscopy and found typical characteristics of ferroptosis, including mitochondrial shrinkage, ruptured mitochondrial membranes, and reduced or absent mitochondrial cristae. Further, both rat models showed high levels of glial fibrillary acidic protein and low levels of myelin basic protein, which are biological indicators of hypoxic-ischemic brain injury and indicate similar degrees of damage. Finally, we found that ferroptosis-related Ferritin (Fth1) and glutathione peroxidase 4 were expressed at higher levels in the brain tissue of rats with hypoxic-ischemic reperfusion brain injury than in rats with simple hypoxic-ischemic brain injury. Based on these results, it appears that the rat model of hypoxic-ischemic reperfusion brain injury is more closely related to the pathophysiology of clinical reperfusion. Reperfusion not only aggravates hypoxic-ischemic brain injury but also activates the anti-ferroptosis system.

Citing Articles

Transplantation of human placental chorionic plate-derived mesenchymal stem cells for repair of neurological damage in neonatal hypoxic-ischemic encephalopathy.

Xue L, Du R, Bi N, Xiao Q, Sun Y, Niu R Neural Regen Res. 2024; 19(9):2027-2035.

PMID: 38227532 PMC: 11040304. DOI: 10.4103/1673-5374.390952.

References
1.
Peng W, Ouyang Y, Wang S, Hou J, Zhu Z, Yang Y . L-F001, a Multifunctional Fasudil-Lipoic Acid Dimer Prevents RSL3-Induced Ferroptosis Maintaining Iron Homeostasis and Inhibiting JNK in HT22 Cells. Front Cell Neurosci. 2022; 16:774297. PMC: 9008309. DOI: 10.3389/fncel.2022.774297. View

2.
Strang K, Golde T, Giasson B . MAPT mutations, tauopathy, and mechanisms of neurodegeneration. Lab Invest. 2019; 99(7):912-928. PMC: 7289372. DOI: 10.1038/s41374-019-0197-x. View

3.
Lv H, Wang Q, Wu S, Yang L, Ren P, Yang Y . Neonatal hypoxic ischemic encephalopathy-related biomarkers in serum and cerebrospinal fluid. Clin Chim Acta. 2015; 450:282-97. DOI: 10.1016/j.cca.2015.08.021. View

4.
Torres A, Rivera B, Polanco C, Jara C, Tapia-Rojas C . Phosphorylated tau as a toxic agent in synaptic mitochondria: implications in aging and Alzheimer's disease. Neural Regen Res. 2022; 17(8):1645-1651. PMC: 8820692. DOI: 10.4103/1673-5374.332125. View

5.
Bae S, Yoo M, Kim Y, Hong I, Kim M, Lee S . Brain-derived neurotrophic factor mediates macrophage migration inhibitory factor to protect neurons against oxygen-glucose deprivation. Neural Regen Res. 2020; 15(8):1483-1489. PMC: 7059593. DOI: 10.4103/1673-5374.274340. View