» Articles » PMID: 18541276

Regulation of Cerebral Vasculature in Normal and Ischemic Brain

Overview
Specialties Neurology
Pharmacology
Date 2008 Jun 11
PMID 18541276
Citations 57
Authors
Affiliations
Soon will be listed here.
Abstract

We outline the mechanisms currently thought to be responsible for controlling cerebral blood flow (CBF) in the physiologic state and during ischemia, focusing on the arterial pial and penetrating microcirculation. Initially, we categorize the cerebral circulation and then review the vascular anatomy. We draw attention to a number of unique features of the cerebral vasculature, which are relevant to the microcirculatory response during ischemia: arterial histology, species differences, collateral flow, the venous drainage, the blood-brain barrier, astrocytes and vascular nerves. The physiology of the arterial microcirculation is then assessed. Lastly, we review the changes during ischemia which impact on the microcirculation. Further understanding of the normal cerebrovascular anatomy and physiology as well as the pathophysiology of ischemia will allow the rational development of a pharmacologic therapy for human stroke and brain injury.

Citing Articles

A review of the 's intervention mechanism and clinical application in ischemic stroke.

Xu K, Deng B, Jia T, Ren M, Chen H, Zhang J Front Pharmacol. 2025; 15:1510779.

PMID: 39881874 PMC: 11775449. DOI: 10.3389/fphar.2024.1510779.


Inhibition of nitric oxide synthase transforms carotid occlusion-mediated benign oligemia into large cerebral infarction.

Kim H, Chung J, Kang J, Schellingerhout D, Lee S, Jang H Theranostics. 2025; 15(2):585-604.

PMID: 39744690 PMC: 11671383. DOI: 10.7150/thno.104132.


Neuroprotective effects of anti-TRAIL-ICG nanoagent and its multimodal imaging evaluation in cerebral ischemia-reperfusion injury.

Yang Q, Ye W, Luo D, Xing J, Xiao Q, Wu H Mater Today Bio. 2024; 26:101094.

PMID: 38854952 PMC: 11157279. DOI: 10.1016/j.mtbio.2024.101094.


Prognostic Value of Venous Outflow Profiles on Multiphase CT Angiography for the Patients with Acute Ischemic Stroke After Endovascular Thrombectomy.

Chu Y, Yin Z, Ni W, Lu S, Shi H, Liu S Transl Stroke Res. 2023; 15(6):1123-1132.

PMID: 37667134 DOI: 10.1007/s12975-023-01187-9.


Characterization of cerebral macro- and microvascular hemodynamics during transient hypotension.

Shoemaker L, Milej D, Sajid A, Mistry J, St Lawrence K, Shoemaker J J Appl Physiol (1985). 2023; 135(4):717-725.

PMID: 37560766 PMC: 10642516. DOI: 10.1152/japplphysiol.00743.2022.


References
1.
Mayhan W, Heistad D . Role of veins and cerebral venous pressure in disruption of the blood-brain barrier. Circ Res. 1986; 59(2):216-20. DOI: 10.1161/01.res.59.2.216. View

2.
Janigro D, West G, GORDON E, Winn H . ATP-sensitive K+ channels in rat aorta and brain microvascular endothelial cells. Am J Physiol. 1993; 265(3 Pt 1):C812-21. DOI: 10.1152/ajpcell.1993.265.3.C812. View

3.
Wagner S, Tagaya M, Koziol J, Quaranta V, Del Zoppo G . Rapid disruption of an astrocyte interaction with the extracellular matrix mediated by integrin alpha 6 beta 4 during focal cerebral ischemia/reperfusion. Stroke. 1997; 28(4):858-65. DOI: 10.1161/01.str.28.4.858. View

4.
Rancillac A, Rossier J, Guille M, Tong X, Geoffroy H, Amatore C . Glutamatergic Control of Microvascular Tone by Distinct GABA Neurons in the Cerebellum. J Neurosci. 2006; 26(26):6997-7006. PMC: 6673912. DOI: 10.1523/JNEUROSCI.5515-05.2006. View

5.
Segal S, Damon D, Duling B . Propagation of vasomotor responses coordinates arteriolar resistances. Am J Physiol. 1989; 256(3 Pt 2):H832-7. DOI: 10.1152/ajpheart.1989.256.3.H832. View