» Articles » PMID: 37052167

Associations of Minor Histocompatibility Antigens with Outcomes Following Allogeneic Hematopoietic Cell Transplantation

Abstract

The role of minor histocompatibility antigens (mHAs) in mediating graft versus leukemia and graft versus host disease (GvHD) following allogeneic hematopoietic cell transplantation (alloHCT) is recognized but not well-characterized. By implementing improved methods for mHA prediction in two large patient cohorts, this study aimed to comprehensively explore the role of mHAs in alloHCT by analyzing whether (1) the number of predicted mHAs, or (2) individual mHAs are associated with clinical outcomes. The study population consisted of 2249 donor-recipient pairs treated for acute myeloid leukemia and myelodysplastic syndrome with alloHCT. A Cox proportional hazard model showed that patients with a class I mHA count greater than the population median had an increased hazard of GvHD mortality (hazard ratio [HR] = 1.39, 95% confidence interval [CI] = 1.01, 1.77, p = .046). Competing risk analyses identified the class I mHAs DLRCKYISL (GSTP), WEHGPTSLL (CRISPLD2), and STSPTTNVL (SERPINF2) were associated with increased GVHD mortality (HR = 2.84, 95% CI = 1.52, 5.31, p = .01), decreased leukemia-free survival (LFS) (HR = 1.94, 95% CI = 1.27, 2.95, p = .044), and increased disease-related mortality (DRM) (HR = 2.32, 95% CI = 1.5, 3.6, p = .008), respectively. One class II mHA YQEIAAIPSAGRERQ (TACC2) was associated with increased risk of treatment-related mortality (TRM) (HR = 3.05, 95% CI = 1.75, 5.31, p = .02). WEHGPTSLL and STSPTTNVL were both present within HLA haplotype B*40:01-C*03:04 and showed a positive dose-response relationship with increased all-cause mortality and DRM and decreased LFS, indicating these two mHAs contribute to the risk of mortality in an additive manner. Our study reports the first large-scale investigation of the associations of predicted mHA peptides with clinical outcomes following alloHCT.

Citing Articles

Ribosome profiling shows variable sensitivity to detect open reading frames for conventional and different types of cryptic T cell antigens.

Fuchs K, Thomaidou S, van der Slik A, van de Meent M, t Hoen P, Falkenburg J Mol Ther Methods Clin Dev. 2025; 33(1):101391.

PMID: 39811688 PMC: 11731205. DOI: 10.1016/j.omtm.2024.101391.


DNA barcoded peptide-MHC multimers to measure and monitor minor histocompatibility antigen-specific T cells after allogeneic stem cell transplantation.

Fuchs K, Goransson M, Kester M, Ettienne N, van de Meent M, de Jong R J Immunother Cancer. 2024; 12(12).

PMID: 39653555 PMC: 11629015. DOI: 10.1136/jitc-2024-009564.


Animal models for transplant immunology: bridging bench to bedside.

Kang M, Park H, Kim K, Choi D Clin Transplant Res. 2024; 38(4):354-376.

PMID: 39233453 PMC: 11732767. DOI: 10.4285/ctr.24.0029.


Systematic identification of minor histocompatibility antigens predicts outcomes of allogeneic hematopoietic cell transplantation.

Cieri N, Hookeri N, Stromhaug K, Li L, Keating J, Diaz-Fernandez P Nat Biotechnol. 2024; .

PMID: 39169264 DOI: 10.1038/s41587-024-02348-3.


Expanding the repertoire reveals recurrent, cryptic, and hematopoietic HLA class I minor histocompatibility antigens.

Fuchs K, van de Meent M, Honders M, Khatri I, Kester M, Koster E Blood. 2024; 143(18):1856-1872.

PMID: 38427583 PMC: 11076866. DOI: 10.1182/blood.2023022343.

References
1.
McCarthy S, Das S, Kretzschmar W, Delaneau O, Wood A, Teumer A . A reference panel of 64,976 haplotypes for genotype imputation. Nat Genet. 2016; 48(10):1279-83. PMC: 5388176. DOI: 10.1038/ng.3643. View

2.
Zheng X, Levine D, Shen J, Gogarten S, Laurie C, Weir B . A high-performance computing toolset for relatedness and principal component analysis of SNP data. Bioinformatics. 2012; 28(24):3326-8. PMC: 3519454. DOI: 10.1093/bioinformatics/bts606. View

3.
Stark J, Renbarger J, Slaven J, Yu Z, Then J, Skiles J . Glutathione-S-transferase P1 may predispose children to a decline in pulmonary function after stem cell transplant. Pediatr Pulmonol. 2017; 52(7):916-921. PMC: 5716628. DOI: 10.1002/ppul.23678. View

4.
Wang K, Li M, Hakonarson H . ANNOVAR: functional annotation of genetic variants from high-throughput sequencing data. Nucleic Acids Res. 2010; 38(16):e164. PMC: 2938201. DOI: 10.1093/nar/gkq603. View

5.
Zeiser R, Vago L . Mechanisms of immune escape after allogeneic hematopoietic cell transplantation. Blood. 2018; 133(12):1290-1297. DOI: 10.1182/blood-2018-10-846824. View