6.
Wimmer V, Albrecht T, Auinger H, Schon C
. synbreed: a framework for the analysis of genomic prediction data using R. Bioinformatics. 2012; 28(15):2086-7.
DOI: 10.1093/bioinformatics/bts335.
View
7.
Habier D, Tetens J, Seefried F, Lichtner P, Thaller G
. The impact of genetic relationship information on genomic breeding values in German Holstein cattle. Genet Sel Evol. 2010; 42:5.
PMC: 2838754.
DOI: 10.1186/1297-9686-42-5.
View
8.
Lu D, Sargolzaei M, Kelly M, Li C, Vander Voort G, Wang Z
. Linkage disequilibrium in Angus, Charolais, and Crossbred beef cattle. Front Genet. 2012; 3:152.
PMC: 3418579.
DOI: 10.3389/fgene.2012.00152.
View
9.
Crossa J, de Los Campos G, Perez P, Gianola D, Burgueno J, Araus J
. Prediction of genetic values of quantitative traits in plant breeding using pedigree and molecular markers. Genetics. 2010; 186(2):713-24.
PMC: 2954475.
DOI: 10.1534/genetics.110.118521.
View
10.
Hayes B, Bowman P, Chamberlain A, Verbyla K, Goddard M
. Accuracy of genomic breeding values in multi-breed dairy cattle populations. Genet Sel Evol. 2009; 41:51.
PMC: 2791750.
DOI: 10.1186/1297-9686-41-51.
View
11.
Daetwyler H, Kemper K, van der Werf J, Hayes B
. Components of the accuracy of genomic prediction in a multi-breed sheep population. J Anim Sci. 2012; 90(10):3375-84.
DOI: 10.2527/jas.2011-4557.
View
12.
Esfandyari H, Sorensen A, Bijma P
. A crossbred reference population can improve the response to genomic selection for crossbred performance. Genet Sel Evol. 2015; 47:76.
PMC: 4587753.
DOI: 10.1186/s12711-015-0155-z.
View
13.
El Hou A, Rocha D, Venot E, Blanquet V, Philippe R
. Long-range linkage disequilibrium in French beef cattle breeds. Genet Sel Evol. 2021; 53(1):63.
PMC: 8306006.
DOI: 10.1186/s12711-021-00657-8.
View
14.
Zhou L, Mrode R, Zhang S, Zhang Q, Li B, Liu J
. Factors affecting GEBV accuracy with single-step Bayesian models. Heredity (Edinb). 2017; 120(2):100-109.
PMC: 5837114.
DOI: 10.1038/s41437-017-0010-9.
View
15.
Villumsen T, Janss L, Lund M
. The importance of haplotype length and heritability using genomic selection in dairy cattle. J Anim Breed Genet. 2009; 126(1):3-13.
DOI: 10.1111/j.1439-0388.2008.00747.x.
View
16.
Chen L, Vinsky M, Li C
. Accuracy of predicting genomic breeding values for carcass merit traits in Angus and Charolais beef cattle. Anim Genet. 2014; 46(1):55-9.
DOI: 10.1111/age.12238.
View
17.
Colombani C, Legarra A, Fritz S, Guillaume F, Croiseau P, Ducrocq V
. Application of Bayesian least absolute shrinkage and selection operator (LASSO) and BayesCπ methods for genomic selection in French Holstein and Montbéliarde breeds. J Dairy Sci. 2012; 96(1):575-91.
DOI: 10.3168/jds.2011-5225.
View
18.
Luna-Nevarez P, Bailey D, Bailey C, Vanleeuwen D, Enns R, Silver G
. Growth characteristics, reproductive performance, and evaluation of their associative relationships in Brangus cattle managed in a Chihuahuan Desert production system1. J Anim Sci. 2010; 88(5):1891-904.
DOI: 10.2527/jas.2009-2541.
View
19.
Hayes B, Bowman P, Chamberlain A, Goddard M
. Invited review: Genomic selection in dairy cattle: progress and challenges. J Dairy Sci. 2009; 92(2):433-43.
DOI: 10.3168/jds.2008-1646.
View
20.
Fortes M, Snelling W, Reverter A, Nagaraj S, Lehnert S, Hawken R
. Gene network analyses of first service conception in Brangus heifers: use of genome and trait associations, hypothalamic-transcriptome information, and transcription factors. J Anim Sci. 2012; 90(9):2894-906.
DOI: 10.2527/jas.2011-4601.
View