» Articles » PMID: 36994629

Insights into the Pseudocapacitive Behavior of Sulfurized Polymer Electrodes for Li-S Batteries

Overview
Journal Adv Sci (Weinh)
Date 2023 Mar 30
PMID 36994629
Authors
Affiliations
Soon will be listed here.
Abstract

Practical applications of sulfurized polymer (SP) materials in Li-S batteries (LSBs) are often written off due to their low S content (≈35 wt%). Unlike conventional S /C composite cathodes, SP materials are shown to function as pseudocapacitors with an active carbon backbone using a comprehensive array of tools including in situ Raman and electrochemical impedance spectroscopy. Critical metric analysis of LSBs containing SP materials with an active carbon skeleton shows that SP cathodes with 35 wt% S are suitable for 350 Wh kg target at the cell level if S loading >5 mg cm , electrolyte-to-sulfur ratio <2 µL mg , and negative-to-positive ratio <5 can be achieved. Although 3D current collectors can enable such high loadings, they often add excess mass decreasing the total capacity. An "active" carbon nanotube bucky sandwich current collector developed here offsets its excess weight by contributing to the electric double layer capacity. SP cathodes (35 wt% S) with ≈5.5 mg cm of S loading (≈15.8 mg cm of SP loading) yield a sulfur-level gravimetric capacity ≈1360 mAh g (≈690 mAh g ), electrode level capacity 200 mAh g (100 mAh g ), and areal capacity ≈7.8 mAh cm (≈4.0 mAh cm ) at 0.1C (1C) rate for ≈100 cycles at E/S ratio = 7 µL mg .

Citing Articles

Comparative Investigation of Water-Based CMC and LA133 Binders for CuO Anodes in High-Performance Lithium-Ion Batteries.

Oli N, Choudhary S, Weiner B, Morell G, S Katiyar R Molecules. 2024; 29(17).

PMID: 39274961 PMC: 11397738. DOI: 10.3390/molecules29174114.


Dually Sulphophilic Chromium Boride Nanocatalyst Boosting Sulfur Conversion Kinetics Toward High-Performance Lithium-Sulfur Batteries.

Li H, Chen G, Zhang K, Wang L, Li G Adv Sci (Weinh). 2023; 10(32):e2303830.

PMID: 37747263 PMC: 10646252. DOI: 10.1002/advs.202303830.


Insights into the Pseudocapacitive Behavior of Sulfurized Polymer Electrodes for Li-S Batteries.

Sapkota N, Chiluwal S, Parajuli P, Rowland A, Podila R Adv Sci (Weinh). 2023; 10(15):e2206901.

PMID: 36994629 PMC: 10214234. DOI: 10.1002/advs.202206901.

References
1.
Nims C, Cron B, Wetherington M, Macalady J, Cosmidis J . Low frequency Raman Spectroscopy for micron-scale and in vivo characterization of elemental sulfur in microbial samples. Sci Rep. 2019; 9(1):7971. PMC: 6538736. DOI: 10.1038/s41598-019-44353-6. View

2.
Beltran S, Balbuena P . Sulfurized Polyacrylonitrile for High-Performance Lithium-Sulfur Batteries: In-Depth Computational Approach Revealing Multiple Sulfur's Reduction Pathways and Hidden Li Storage Mechanisms for Extra Discharge Capacity. ACS Appl Mater Interfaces. 2020; 13(1):491-502. DOI: 10.1021/acsami.0c17537. View

3.
Huang C, Lin K, Hsieh Y, Su W, Wang C, Brunklaus G . New Insights into the N-S Bond Formation of a Sulfurized-Polyacrylonitrile Cathode Material for Lithium-Sulfur Batteries. ACS Appl Mater Interfaces. 2021; 13(12):14230-14238. DOI: 10.1021/acsami.0c22811. View

4.
Yin Y, Xin S, Guo Y, Wan L . Lithium-sulfur batteries: electrochemistry, materials, and prospects. Angew Chem Int Ed Engl. 2013; 52(50):13186-200. DOI: 10.1002/anie.201304762. View

5.
Kang N, Lin Y, Yang L, Lu D, Xiao J, Qi Y . Cathode porosity is a missing key parameter to optimize lithium-sulfur battery energy density. Nat Commun. 2019; 10(1):4597. PMC: 6787095. DOI: 10.1038/s41467-019-12542-6. View