» Articles » PMID: 36991703

Electrocardiogram Heartbeat Classification for Arrhythmias and Myocardial Infarction

Overview
Journal Sensors (Basel)
Publisher MDPI
Specialty Biotechnology
Date 2023 Mar 30
PMID 36991703
Authors
Affiliations
Soon will be listed here.
Abstract

An electrocardiogram (ECG) is a basic and quick test for evaluating cardiac disorders and is crucial for remote patient monitoring equipment. An accurate ECG signal classification is critical for real-time measurement, analysis, archiving, and transmission of clinical data. Numerous studies have focused on accurate heartbeat classification, and deep neural networks have been suggested for better accuracy and simplicity. We investigated a new model for ECG heartbeat classification and found that it surpasses state-of-the-art models, achieving remarkable accuracy scores of 98.5% on the Physionet MIT-BIH dataset and 98.28% on the PTB database. Furthermore, our model achieves an impressive F1-score of approximately 86.71%, outperforming other models, such as MINA, CRNN, and EXpertRF on the PhysioNet Challenge 2017 dataset.

Citing Articles

LDCNN: A new arrhythmia detection technique with ECG signals using a linear deep convolutional neural network.

Bayani A, Kargar M Physiol Rep. 2024; 12(17):e16182.

PMID: 39218586 PMC: 11366442. DOI: 10.14814/phy2.16182.


Tunable Neuromorphic Switching Dynamics via Porosity Control in Mesoporous Silica Diffusive Memristors.

Zhang T, Shao L, Jaafar A, Zeimpekis I, de Groot C, Bartlett P ACS Appl Mater Interfaces. 2024; 16(13):16641-16652.

PMID: 38494599 PMC: 10995907. DOI: 10.1021/acsami.3c19020.


Attention-assisted hybrid CNN-BILSTM-BiGRU model with SMOTE-Tomek method to detect cardiac arrhythmia based on 12lead electrocardiogram signals.

Chopannejad S, Roshanpoor A, Sadoughi F Digit Health. 2024; 10:20552076241234624.

PMID: 38449680 PMC: 10916475. DOI: 10.1177/20552076241234624.


Automated myocardial infarction and angina detection using second derivative of photoplethysmography.

Neha , Sardana H, Dahiya N, Dogra N, Kanawade R, Sharma Y Phys Eng Sci Med. 2023; 46(3):1259-1269.

PMID: 37395927 DOI: 10.1007/s13246-023-01293-w.

References
1.
MHamdi L, Dammak O, Cottin F, Dhaou I . Artificial Intelligence for Cardiac Diseases Diagnosis and Prediction Using ECG Images on Embedded Systems. Biomedicines. 2022; 10(8). PMC: 9405719. DOI: 10.3390/biomedicines10082013. View

2.
Goldberger A, Amaral L, Glass L, Hausdorff J, Ivanov P, Mark R . PhysioBank, PhysioToolkit, and PhysioNet: components of a new research resource for complex physiologic signals. Circulation. 2000; 101(23):E215-20. DOI: 10.1161/01.cir.101.23.e215. View

3.
Rajendra Acharya U, Oh S, Hagiwara Y, Tan J, Adam M, Gertych A . A deep convolutional neural network model to classify heartbeats. Comput Biol Med. 2017; 89:389-396. DOI: 10.1016/j.compbiomed.2017.08.022. View

4.
Murat F, Yildirim O, Talo M, Baloglu U, Demir Y, Rajendra Acharya U . Application of deep learning techniques for heartbeats detection using ECG signals-analysis and review. Comput Biol Med. 2020; 120:103726. DOI: 10.1016/j.compbiomed.2020.103726. View

5.
Sun L, Lu Y, Yang K, Li S . ECG analysis using multiple instance learning for myocardial infarction detection. IEEE Trans Biomed Eng. 2012; 59(12):3348-56. DOI: 10.1109/TBME.2012.2213597. View