» Articles » PMID: 36959422

Artificial-intelligence-based Molecular Classification of Diffuse Gliomas Using Rapid, Label-free Optical Imaging

Abstract

Molecular classification has transformed the management of brain tumors by enabling more accurate prognostication and personalized treatment. However, timely molecular diagnostic testing for patients with brain tumors is limited, complicating surgical and adjuvant treatment and obstructing clinical trial enrollment. In this study, we developed DeepGlioma, a rapid (<90 seconds), artificial-intelligence-based diagnostic screening system to streamline the molecular diagnosis of diffuse gliomas. DeepGlioma is trained using a multimodal dataset that includes stimulated Raman histology (SRH); a rapid, label-free, non-consumptive, optical imaging method; and large-scale, public genomic data. In a prospective, multicenter, international testing cohort of patients with diffuse glioma (n = 153) who underwent real-time SRH imaging, we demonstrate that DeepGlioma can predict the molecular alterations used by the World Health Organization to define the adult-type diffuse glioma taxonomy (IDH mutation, 1p19q co-deletion and ATRX mutation), achieving a mean molecular classification accuracy of 93.3 ± 1.6%. Our results represent how artificial intelligence and optical histology can be used to provide a rapid and scalable adjunct to wet lab methods for the molecular screening of patients with diffuse glioma.

Citing Articles

Intraoperative classification of CNS lymphoma and glioblastoma by AI-based analysis of Stimulated Raman Histology (SRH).

Scheffler P, Straehle J, El Rahal A, Erny D, Mizaikoff B, Vasilikos I Brain Spine. 2025; 5:104187.

PMID: 40027294 PMC: 11868944. DOI: 10.1016/j.bas.2025.104187.


Nanopore-based random genomic sampling for intraoperative molecular diagnosis.

Emiliani F, Ismail A, Hughes E, Tsongalis G, Zanazzi G, Lin C Genome Med. 2025; 17(1):6.

PMID: 39833913 PMC: 11744943. DOI: 10.1186/s13073-025-01427-7.


Cancer neuroscience and glioma: clinical implications.

Westphal M, Drexler R, Maire C, Ricklefs F, Lamszus K Acta Neurochir (Wien). 2025; 167(1):2.

PMID: 39752006 PMC: 11698767. DOI: 10.1007/s00701-024-06406-2.


Explainable AI improves task performance in human-AI collaboration.

Senoner J, Schallmoser S, Kratzwald B, Feuerriegel S, Netland T Sci Rep. 2024; 14(1):31150.

PMID: 39730794 PMC: 11681242. DOI: 10.1038/s41598-024-82501-9.


Clinical confocal laser endomicroscopy for imaging of autofluorescence signals of human brain tumors and non-tumor brain.

Reichenbach M, Richter S, Galli R, Meinhardt M, Kirsche K, Temme A J Cancer Res Clin Oncol. 2024; 151(1):19.

PMID: 39724474 PMC: 11671560. DOI: 10.1007/s00432-024-06052-2.


References
1.
Louis D, Perry A, Wesseling P, Brat D, Cree I, Figarella-Branger D . The 2021 WHO Classification of Tumors of the Central Nervous System: a summary. Neuro Oncol. 2021; 23(8):1231-1251. PMC: 8328013. DOI: 10.1093/neuonc/noab106. View

2.
Metter D, Colgan T, Leung S, Timmons C, Park J . Trends in the US and Canadian Pathologist Workforces From 2007 to 2017. JAMA Netw Open. 2019; 2(5):e194337. PMC: 6547243. DOI: 10.1001/jamanetworkopen.2019.4337. View

3.
Brat D, Aldape K, Bridge J, Canoll P, Colman H, Hameed M . Molecular Biomarker Testing for the Diagnosis of Diffuse Gliomas. Arch Pathol Lab Med. 2022; 146(5):547-574. PMC: 9311267. DOI: 10.5858/arpa.2021-0295-CP. View

4.
Hollon T, Pandian B, Adapa A, Urias E, Save A, Khalsa S . Near real-time intraoperative brain tumor diagnosis using stimulated Raman histology and deep neural networks. Nat Med. 2020; 26(1):52-58. PMC: 6960329. DOI: 10.1038/s41591-019-0715-9. View

5.
Eckel-Passow J, Lachance D, Molinaro A, Walsh K, Decker P, Sicotte H . Glioma Groups Based on 1p/19q, IDH, and TERT Promoter Mutations in Tumors. N Engl J Med. 2015; 372(26):2499-508. PMC: 4489704. DOI: 10.1056/NEJMoa1407279. View