» Articles » PMID: 36951552

Bacteria in Fluid Flow

Overview
Journal J Bacteriol
Specialty Microbiology
Date 2023 Mar 23
PMID 36951552
Authors
Affiliations
Soon will be listed here.
Abstract

Bacteria thrive in environments rich in fluid flow, such as the gastrointestinal tract, bloodstream, aquatic systems, and the urinary tract. Despite the importance of flow, how flow affects bacterial life is underappreciated. In recent years, the combination of approaches from biology, physics, and engineering has led to a deeper understanding of how bacteria interact with flow. Here, we highlight the wide range of bacterial responses to flow, including changes in surface adhesion, motility, surface colonization, quorum sensing, virulence factor production, and gene expression. To emphasize the diversity of flow responses, we focus our review on how flow affects four ecologically distinct bacterial species: Escherichia coli, Staphylococcus aureus, Caulobacter crescentus, and Pseudomonas aeruginosa. Additionally, we present experimental approaches to precisely study bacteria in flow, discuss how only some flow responses are triggered by shear force, and provide perspective on flow-sensitive bacterial signaling.

Citing Articles

Shear flow patterns antimicrobial gradients across bacterial populations.

Shuppara A, Padron G, Sharma A, Modi Z, Koch M, Sanfilippo J Sci Adv. 2025; 11(11):eads5005.

PMID: 40073137 PMC: 11900875. DOI: 10.1126/sciadv.ads5005.


The Impact of Fluid Flow on Microbial Growth and Distribution in Food Processing Systems.

Al-Sharify Z, Al-Najjar S, Naser Z, Alsherfy Z, Onyeaka H Foods. 2025; 14(3).

PMID: 39941998 PMC: 11817348. DOI: 10.3390/foods14030401.


Flow-induced bending of flagella controls bacterial surface behavior.

Palalay J, Sanfilippo J bioRxiv. 2025; .

PMID: 39829777 PMC: 11741401. DOI: 10.1101/2025.01.07.631359.


Combining multiple stressors blocks bacterial migration and growth.

Sharma A, Shuppara A, Padron G, Sanfilippo J Curr Biol. 2024; 34(24):5774-5781.e4.

PMID: 39549703 PMC: 11652226. DOI: 10.1016/j.cub.2024.10.029.


Free-swimming bacteria transcriptionally respond to shear flow.

Ramachandran A, Stone H, Gitai Z Proc Natl Acad Sci U S A. 2024; 121(42):e2406688121.

PMID: 39383001 PMC: 11494325. DOI: 10.1073/pnas.2406688121.


References
1.
Meng Y, Li Y, Galvani C, Hao G, Turner J, Burr T . Upstream migration of Xylella fastidiosa via pilus-driven twitching motility. J Bacteriol. 2005; 187(16):5560-7. PMC: 1196070. DOI: 10.1128/JB.187.16.5560-5567.2005. View

2.
Tsang P, Li G, Brun Y, Freund L, Tang J . Adhesion of single bacterial cells in the micronewton range. Proc Natl Acad Sci U S A. 2006; 103(15):5764-8. PMC: 1458647. DOI: 10.1073/pnas.0601705103. View

3.
Mathelie-Guinlet M, Viela F, Pietrocola G, Speziale P, Alsteens D, Dufrene Y . Force-clamp spectroscopy identifies a catch bond mechanism in a Gram-positive pathogen. Nat Commun. 2020; 11(1):5431. PMC: 7591895. DOI: 10.1038/s41467-020-19216-8. View

4.
Borlee B, Goldman A, Murakami K, Samudrala R, Wozniak D, Parsek M . Pseudomonas aeruginosa uses a cyclic-di-GMP-regulated adhesin to reinforce the biofilm extracellular matrix. Mol Microbiol. 2010; 75(4):827-42. PMC: 2847200. DOI: 10.1111/j.1365-2958.2009.06991.x. View

5.
Ganesh V, Rivera J, Smeds E, Ko Y, Bowden M, Wann E . A structural model of the Staphylococcus aureus ClfA-fibrinogen interaction opens new avenues for the design of anti-staphylococcal therapeutics. PLoS Pathog. 2008; 4(11):e1000226. PMC: 2582960. DOI: 10.1371/journal.ppat.1000226. View