» Articles » PMID: 36932614

Bézier Interpolation Improves the Inference of Dynamical Models from Data

Overview
Journal Phys Rev E
Specialty Biophysics
Date 2023 Mar 18
PMID 36932614
Authors
Affiliations
Soon will be listed here.
Abstract

Many dynamical systems, from quantum many-body systems to evolving populations to financial markets, are described by stochastic processes. Parameters characterizing such processes can often be inferred using information integrated over stochastic paths. However, estimating time-integrated quantities from real data with limited time resolution is challenging. Here, we propose a framework for accurately estimating time-integrated quantities using Bézier interpolation. We applied our approach to two dynamical inference problems: Determining fitness parameters for evolving populations and inferring forces driving Ornstein-Uhlenbeck processes. We found that Bézier interpolation reduces the estimation bias for both dynamical inference problems. This improvement was especially noticeable for data sets with limited time resolution. Our method could be broadly applied to improve accuracy for other dynamical inference problems using finitely sampled data.

Citing Articles

A binary trait model reveals the fitness effects of HIV-1 escape from T cell responses.

Gao Y, Barton J Proc Natl Acad Sci U S A. 2025; 122(8):e2405379122.

PMID: 39970000 PMC: 11873823. DOI: 10.1073/pnas.2405379122.


Efficient epistasis inference via higher-order covariance matrix factorization.

Shimagaki K, Barton J bioRxiv. 2024; .

PMID: 39464126 PMC: 11507688. DOI: 10.1101/2024.10.14.618287.


A binary trait model reveals the fitness effects of HIV-1 escape from T cell responses.

Gao Y, Barton J bioRxiv. 2024; .

PMID: 38464239 PMC: 10925374. DOI: 10.1101/2024.03.03.583183.

References
1.
Gillespie . Exact numerical simulation of the Ornstein-Uhlenbeck process and its integral. Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics. 1996; 54(2):2084-2091. DOI: 10.1103/physreve.54.2084. View

2.
Sohail M, Louie R, Hong Z, Barton J, McKay M . Inferring Epistasis from Genetic Time-series Data. Mol Biol Evol. 2022; 39(10). PMC: 9558069. DOI: 10.1093/molbev/msac199. View

3.
Morcos F, Pagnani A, Lunt B, Bertolino A, Marks D, Sander C . Direct-coupling analysis of residue coevolution captures native contacts across many protein families. Proc Natl Acad Sci U S A. 2011; 108(49):E1293-301. PMC: 3241805. DOI: 10.1073/pnas.1111471108. View

4.
Tubiana J, Cocco S, Monasson R . Learning protein constitutive motifs from sequence data. Elife. 2019; 8. PMC: 6436896. DOI: 10.7554/eLife.39397. View

5.
Tataru P, Simonsen M, Bataillon T, Hobolth A . Statistical Inference in the Wright-Fisher Model Using Allele Frequency Data. Syst Biol. 2017; 66(1):e30-e46. PMC: 5837693. DOI: 10.1093/sysbio/syw056. View