» Articles » PMID: 36932083

Amide-to-ester Substitution As a Stable Alternative to N-methylation for Increasing Membrane Permeability in Cyclic Peptides

Abstract

Naturally occurring peptides with high membrane permeability often have ester bonds on their backbones. However, the impact of amide-to-ester substitutions on the membrane permeability of peptides has not been directly evaluated. Here we report the effect of amide-to-ester substitutions on the membrane permeability and conformational ensemble of cyclic peptides related to membrane permeation. Amide-to-ester substitutions are shown to improve the membrane permeability of dipeptides and a model cyclic hexapeptide. NMR-based conformational analysis and enhanced sampling molecular dynamics simulations suggest that the conformational transition of the cyclic hexapeptide upon membrane permeation is differently influenced by an amide-to-ester substitution and an amide N-methylation. The effect of amide-to-ester substitution on membrane permeability of other cyclic hexapeptides, cyclic octapeptides, and a cyclic nonapeptide is also investigated to examine the scope of the substitution. Appropriate utilization of amide-to-ester substitution based on our results will facilitate the development of membrane-permeable peptides.

Citing Articles

Isolation, total synthesis and structure determination of antifungal macrocyclic depsipeptide, tetraselide.

Nakahara H, Sennari G, Azami H, Tsutsumi H, Watanabe Y, Noguchi Y Chem Sci. 2025; .

PMID: 40070467 PMC: 11892018. DOI: 10.1039/d5sc00566c.


MultiCycPermea: accurate and interpretable prediction of cyclic peptide permeability using a multimodal image-sequence model.

Wang Z, Chen Y, Shang Y, Yang X, Pan W, Ye X BMC Biol. 2025; 23(1):63.

PMID: 40016695 PMC: 11866622. DOI: 10.1186/s12915-025-02166-2.


Peptide design to control protein-protein interactions.

van Wier S, Beekman A Chem Soc Rev. 2025; 54(4):1684-1698.

PMID: 39817557 PMC: 11736853. DOI: 10.1039/d4cs00243a.


Temporal and Spatial Characterization of CUL3-driven Targeted Degradation of BET family, BRD Proteins by the Macrocycle-based Degrader BTR2004.

Fechtmeyer P, Yeh J bioRxiv. 2024; .

PMID: 39677683 PMC: 11643031. DOI: 10.1101/2024.12.07.627262.


Selection of Nucleotide-Encoded Mass Libraries of Macrocyclic Peptides for Inaccessible Drug Targets.

Colas K, Bindl D, Suga H Chem Rev. 2024; 124(21):12213-12241.

PMID: 39451037 PMC: 11565579. DOI: 10.1021/acs.chemrev.4c00422.


References
1.
Wang C, Northfield S, Colless B, Chaousis S, Hamernig I, Lohman R . Rational design and synthesis of an orally bioavailable peptide guided by NMR amide temperature coefficients. Proc Natl Acad Sci U S A. 2014; 111(49):17504-9. PMC: 4267368. DOI: 10.1073/pnas.1417611111. View

2.
Li Y, Lavey N, Coker J, Knobbe J, Truong D, Yu H . Consequences of Depsipeptide Substitution on the ClpP Activation Activity of Antibacterial Acyldepsipeptides. ACS Med Chem Lett. 2017; 8(11):1171-1176. PMC: 5682616. DOI: 10.1021/acsmedchemlett.7b00320. View

3.
Dougherty P, Qian Z, Pei D . Macrocycles as protein-protein interaction inhibitors. Biochem J. 2017; 474(7):1109-1125. PMC: 6511976. DOI: 10.1042/BCJ20160619. View

4.
Schuttelkopf A, van Aalten D . PRODRG: a tool for high-throughput crystallography of protein-ligand complexes. Acta Crystallogr D Biol Crystallogr. 2004; 60(Pt 8):1355-63. DOI: 10.1107/S0907444904011679. View

5.
Rand A, Leung S, Eng H, Rotter C, Sharma R, Kalgutkar A . Optimizing PK properties of cyclic peptides: the effect of side chain substitutions on permeability and clearance(). Medchemcomm. 2012; 3(10):1282-1289. PMC: 3488302. DOI: 10.1039/C2MD20203D. View