Excited State Intramolecular Proton Transfer with Nuclear-Electronic Orbital Ehrenfest Dynamics
Overview
Authors
Affiliations
The recent development of the Ehrenfest dynamics approach in the nuclear-electronic orbital (NEO) framework provides a promising way to simulate coupled nuclear-electronic dynamics. Our previous study showed that the NEO-Ehrenfest approach with a semiclassical traveling proton basis method yields accurate predictions of molecular vibrational frequencies. In this work, we provide a more thorough analysis of the semiclassical traveling proton basis method to elucidate its validity and convergence behavior. We also conduct NEO-Ehrenfest dynamics simulations to study an excited state intramolecular proton transfer process. These simulations reveal that nuclear quantum effects influence the predictions of proton transfer reaction rates and kinetic isotope effects due to the intrinsic delocalized nature of the quantum nuclear wave function. This work illustrates the importance of nuclear quantum effects in coupled nuclear-electronic dynamical processes and shows that the NEO-Ehrenfest approach can be a powerful tool for providing insights and predictions for these processes.
Chow M, Reinhardt C, Hammes-Schiffer S J Am Chem Soc. 2024; 146(48):33258-33264.
PMID: 39566052 PMC: 11625381. DOI: 10.1021/jacs.4c13955.
Odella E, Fetherolf J, Secor M, DiPaola L, Dominguez R, Gonzalez E J Phys Chem Lett. 2024; 15(43):10835-10841.
PMID: 39436359 PMC: 11587801. DOI: 10.1021/acs.jpclett.4c02141.
Nuclear Quantum Effects Made Accessible: Local Density Fitting in Multicomponent Methods.
Hasecke L, Mata R J Chem Theory Comput. 2023; 19(22):8223-8233.
PMID: 37920900 PMC: 10687858. DOI: 10.1021/acs.jctc.3c01055.
Nuclear-Electronic Orbital Quantum Mechanical/Molecular Mechanical Real-Time Dynamics.
Chow M, Li T, Hammes-Schiffer S J Phys Chem Lett. 2023; 14(43):9556-9562.
PMID: 37857272 PMC: 11401051. DOI: 10.1021/acs.jpclett.3c02275.
Exploring Proton-Coupled Electron Transfer at Multiple Scales.
Hammes-Schiffer S Nat Comput Sci. 2023; 3(4):291-300.
PMID: 37577057 PMC: 10416817. DOI: 10.1038/s43588-023-00422-5.