» Articles » PMID: 36882636

Measuring Compound Eye Optics with Microscope and MicroCT Images

Overview
Journal Commun Biol
Specialty Biology
Date 2023 Mar 7
PMID 36882636
Authors
Affiliations
Soon will be listed here.
Abstract

With a great variety of shapes and sizes, compound eye morphologies give insight into visual ecology, development, and evolution, and inspire novel engineering. In contrast to our own camera-type eyes, compound eyes reveal their resolution, sensitivity, and field of view externally, provided they have spherical curvature and orthogonal ommatidia. Non-spherical compound eyes with skewed ommatidia require measuring internal structures, such as with MicroCT (µCT). Thus far, there is no efficient tool to characterize compound eye optics, from either 2D or 3D data, automatically. Here we present two open-source programs: (1) the ommatidia detecting algorithm (ODA), which measures ommatidia count and diameter in 2D images, and (2) a µCT pipeline (ODA-3D), which calculates anatomical acuity, sensitivity, and field of view across the eye by applying the ODA to 3D data. We validate these algorithms on images, images of replicas, and µCT eye scans from ants, fruit flies, moths, and a bee.

Citing Articles

Pygmaclypeatus daziensis, a unique lower Cambrian arthropod with two different compound eye systems.

Schmidt M, Schoenemann B, Hou X, Melzer R, Liu Y Commun Biol. 2025; 8(1):317.

PMID: 40011683 PMC: 11865447. DOI: 10.1038/s42003-025-07664-1.


An accessible digital imaging workflow for multiplexed quantitative analysis of adult eye phenotypes in .

Pipkin H, Lindsay H, Smiley A, Jurmu J, Arsham A bioRxiv. 2024; .

PMID: 39253516 PMC: 11383053. DOI: 10.1101/2024.01.26.577286.


Ultrastructure and Spectral Characteristics of the Compound Eye of (Baly, 1881) (Coleoptera, Chrysomelidae).

Liang Z, Zhang T, Muinde J, Fan W, Dong Z, Wu F Insects. 2024; 15(7).

PMID: 39057265 PMC: 11277293. DOI: 10.3390/insects15070532.


Synchrotron-source micro-x-ray computed tomography for examining butterfly eyes.

Paukner D, Wildenberg G, Badalamente G, Littlewood P, Kronforst M, Palmer S Ecol Evol. 2024; 14(4):e11137.

PMID: 38571794 PMC: 10985371. DOI: 10.1002/ece3.11137.


Evolution of compound eye morphology underlies differences in vision between closely related Drosophila species.

Buffry A, Currea J, Franke-Gerth F, Palavalli-Nettimi R, Bodey A, Rau C BMC Biol. 2024; 22(1):67.

PMID: 38504308 PMC: 10953123. DOI: 10.1186/s12915-024-01864-7.


References
1.
Yang Q, Zhang X, Bagal A, Guo W, Chang C . Antireflection effects at nanostructured material interfaces and the suppression of thin-film interference. Nanotechnology. 2013; 24(23):235202. DOI: 10.1088/0957-4484/24/23/235202. View

2.
Diez-Hermano S, Valero J, Rueda C, Ganfornina M, Sanchez D . An automated image analysis method to measure regularity in biological patterns: a case study in a Drosophila neurodegenerative model. Mol Neurodegener. 2015; 10:9. PMC: 4367968. DOI: 10.1186/s13024-015-0005-z. View

3.
Gonzalez-Bellido P, Wardill T, Juusola M . Compound eyes and retinal information processing in miniature dipteran species match their specific ecological demands. Proc Natl Acad Sci U S A. 2011; 108(10):4224-9. PMC: 3054003. DOI: 10.1073/pnas.1014438108. View

4.
Wardill T, Fabian S, Pettigrew A, Stavenga D, Nordstrom K, Gonzalez-Bellido P . A Novel Interception Strategy in a Miniature Robber Fly with Extreme Visual Acuity. Curr Biol. 2017; 27(6):854-859. PMC: 5364399. DOI: 10.1016/j.cub.2017.01.050. View

5.
Posnien N, Hopfen C, Hilbrant M, Ramos-Womack M, Murat S, Schonauer A . Evolution of eye morphology and rhodopsin expression in the Drosophila melanogaster species subgroup. PLoS One. 2012; 7(5):e37346. PMC: 3360684. DOI: 10.1371/journal.pone.0037346. View