» Articles » PMID: 36882394

OTTERS: a Powerful TWAS Framework Leveraging Summary-level Reference Data

Overview
Journal Nat Commun
Specialty Biology
Date 2023 Mar 7
PMID 36882394
Authors
Affiliations
Soon will be listed here.
Abstract

Most existing TWAS tools require individual-level eQTL reference data and thus are not applicable to summary-level reference eQTL datasets. The development of TWAS methods that can harness summary-level reference data is valuable to enable TWAS in broader settings and enhance power due to increased reference sample size. Thus, we develop a TWAS framework called OTTERS (Omnibus Transcriptome Test using Expression Reference Summary data) that adapts multiple polygenic risk score (PRS) methods to estimate eQTL weights from summary-level eQTL reference data and conducts an omnibus TWAS. We show that OTTERS is a practical and powerful TWAS tool by both simulations and application studies.

Citing Articles

Proteome-Wide Association Study for Finding Druggable Targets in Progression and Onset of Parkinson's Disease.

Gao C, Zhou H, Liang W, Wen Z, Liao W, Xie Z CNS Neurosci Ther. 2025; 31(2):e70294.

PMID: 40008429 PMC: 11862824. DOI: 10.1111/cns.70294.


MOSES: a methylation-based gene association approach for unveiling environmentally regulated genes linked to a trait or disease.

Kim S, Qin Y, Park H, Bohn R, Yue M, Xu Z Clin Epigenetics. 2024; 16(1):161.

PMID: 39558360 PMC: 11574994. DOI: 10.1186/s13148-024-01776-x.


Multiome-wide Association Studies: Novel Approaches for Understanding Diseases.

Shao M, Chen K, Zhang S, Tian M, Shen Y, Cao C Genomics Proteomics Bioinformatics. 2024; 22(5).

PMID: 39471467 PMC: 11630051. DOI: 10.1093/gpbjnl/qzae077.


Omnibus proteome-wide association study identifies 43 risk genes for Alzheimer disease dementia.

Hu T, Parrish R, Dai Q, Buchman A, Tasaki S, Bennett D Am J Hum Genet. 2024; 111(9):1848-1863.

PMID: 39079537 PMC: 11393696. DOI: 10.1016/j.ajhg.2024.07.001.


Partitioning and aggregating cross-tissue and tissue-specific genetic effects to identify gene-trait associations.

Song S, Wang L, Hou L, Liu J Nat Commun. 2024; 15(1):5769.

PMID: 38982044 PMC: 11233643. DOI: 10.1038/s41467-024-49924-4.


References
1.
Zhu Z, Zhang F, Hu H, Bakshi A, Robinson M, Powell J . Integration of summary data from GWAS and eQTL studies predicts complex trait gene targets. Nat Genet. 2016; 48(5):481-7. DOI: 10.1038/ng.3538. View

2.
Loh P, Tucker G, Bulik-Sullivan B, Vilhjalmsson B, Finucane H, Salem R . Efficient Bayesian mixed-model analysis increases association power in large cohorts. Nat Genet. 2015; 47(3):284-90. PMC: 4342297. DOI: 10.1038/ng.3190. View

3.
Yuan Z, Zhu H, Zeng P, Yang S, Sun S, Yang C . Testing and controlling for horizontal pleiotropy with probabilistic Mendelian randomization in transcriptome-wide association studies. Nat Commun. 2020; 11(1):3861. PMC: 7395774. DOI: 10.1038/s41467-020-17668-6. View

4.
Bennett D, Schneider J, Arvanitakis Z, Wilson R . Overview and findings from the religious orders study. Curr Alzheimer Res. 2012; 9(6):628-45. PMC: 3409291. DOI: 10.2174/156720512801322573. View

5.
Fuchs F, Whelton P . High Blood Pressure and Cardiovascular Disease. Hypertension. 2019; 75(2):285-292. PMC: 10243231. DOI: 10.1161/HYPERTENSIONAHA.119.14240. View