» Articles » PMID: 36868785

Structural and Dynamic Effects of Pseudouridine Modifications on Noncanonical Interactions in RNA

Overview
Journal RNA
Specialty Molecular Biology
Date 2023 Mar 3
PMID 36868785
Authors
Affiliations
Soon will be listed here.
Abstract

Pseudouridine is the most frequently naturally occurring RNA modification, found in all classes of biologically functional RNAs. Compared to uridine, pseudouridine contains an additional hydrogen bond donor group and is therefore widely regarded as a structure stabilizing modification. However, the effects of pseudouridine modifications on the structure and dynamics of RNAs have so far only been investigated in a limited number of different structural contexts. Here, we introduced pseudouridine modifications into the U-turn motif and the adjacent U:U closing base pair of the neomycin-sensing riboswitch (NSR)-an extensively characterized model system for RNA structure, ligand binding, and dynamics. We show that the effects of replacing specific uridines with pseudouridines on RNA dynamics crucially depend on the exact location of the replacement site and can range from destabilizing to locally or even globally stabilizing. By using a combination of NMR spectroscopy, MD simulations and QM calculations, we rationalize the observed effects on a structural and dynamical level. Our results will help to better understand and predict the consequences of pseudouridine modifications on the structure and function of biologically important RNAs.

Citing Articles

Structural basis for aminoacylation of cellular modified tRNALys3 by human lysyl-tRNA synthetase.

Devarkar S, Budding C, Pathirage C, Kavoor A, Herbert C, Limbach P Nucleic Acids Res. 2025; 53(5).

PMID: 40036503 PMC: 11878792. DOI: 10.1093/nar/gkaf114.


Structural basis for aminoacylation of cellular modified tRNA by human lysyl-tRNA synthetase.

Devarkar S, Budding C, Pathirage C, Kavoor A, Herbert C, Limbach P bioRxiv. 2024; .

PMID: 39677689 PMC: 11643047. DOI: 10.1101/2024.12.07.627298.


The diverse landscape of RNA modifications in cancer development and progression.

Kim H, Eun J, Jang S, Kim J, Jeong J Genes Genomics. 2024; 47(2):135-155.

PMID: 39643826 DOI: 10.1007/s13258-024-01601-y.


RNA modifications: emerging players in the regulation of reproduction and development.

Wen J, Zhu Q, Liu Y, Gou L Acta Biochim Biophys Sin (Shanghai). 2024; 57(1):33-58.

PMID: 39574165 PMC: 11802351. DOI: 10.3724/abbs.2024201.


SEISMICgraph: a web-based tool for RNA structure data visualization.

Wightman F, Yang G, Martin des Taillades Y, LEsperance-Kerckhoff C, Grote S, Allan M bioRxiv. 2024; .

PMID: 39386640 PMC: 11463429. DOI: 10.1101/2024.09.26.615187.


References
1.
Zgarbova M, Otyepka M, Sponer J, Mladek A, Banas P, Cheatham 3rd T . Refinement of the Cornell et al. Nucleic Acids Force Field Based on Reference Quantum Chemical Calculations of Glycosidic Torsion Profiles. J Chem Theory Comput. 2011; 7(9):2886-2902. PMC: 3171997. DOI: 10.1021/ct200162x. View

2.
Meroueh M, Grohar P, Qiu J, SantaLucia Jr J, Scaringe S, Chow C . Unique structural and stabilizing roles for the individual pseudouridine residues in the 1920 region of Escherichia coli 23S rRNA. Nucleic Acids Res. 2000; 28(10):2075-83. PMC: 105375. DOI: 10.1093/nar/28.10.2075. View

3.
Del Bene J, Perera S, Bartlett R, Elguero J, Alkorta I, Lopez-Leonardo C . (3h)J((15)N-(31)P) spin-spin coupling constants across N[bond]H....O[bond]P hydrogen bonds. J Am Chem Soc. 2002; 124(22):6393-7. DOI: 10.1021/ja011755o. View

4.
Weigand J, Sanchez M, Gunnesch E, Zeiher S, Schroeder R, Suess B . Screening for engineered neomycin riboswitches that control translation initiation. RNA. 2007; 14(1):89-97. PMC: 2151025. DOI: 10.1261/rna.772408. View

5.
Duchardt-Ferner E, Wohnert J . NMR experiments for the rapid identification of P=O···H-X type hydrogen bonds in nucleic acids. J Biomol NMR. 2017; 69(2):101-110. DOI: 10.1007/s10858-017-0140-7. View