6.
Birnkrant D, Bushby K, Bann C, Apkon S, Blackwell A, Brumbaugh D
. Diagnosis and management of Duchenne muscular dystrophy, part 1: diagnosis, and neuromuscular, rehabilitation, endocrine, and gastrointestinal and nutritional management. Lancet Neurol. 2018; 17(3):251-267.
PMC: 5869704.
DOI: 10.1016/S1474-4422(18)30024-3.
View
7.
Zhang H, Zhang Y, Yin H
. Genome Editing with mRNA Encoding ZFN, TALEN, and Cas9. Mol Ther. 2019; 27(4):735-746.
PMC: 6453514.
DOI: 10.1016/j.ymthe.2019.01.014.
View
8.
Knopp Y, Geis F, Heckl D, Horn S, Neumann T, Kuehle J
. Transient Retrovirus-Based CRISPR/Cas9 All-in-One Particles for Efficient, Targeted Gene Knockout. Mol Ther Nucleic Acids. 2018; 13:256-274.
PMC: 6187057.
DOI: 10.1016/j.omtn.2018.09.006.
View
9.
Judge A, McClintock K, Phelps J, MacLachlan I
. Hypersensitivity and loss of disease site targeting caused by antibody responses to PEGylated liposomes. Mol Ther. 2005; 13(2):328-37.
DOI: 10.1016/j.ymthe.2005.09.014.
View
10.
Maeder M, Linder S, Cascio V, Fu Y, Ho Q, Joung J
. CRISPR RNA-guided activation of endogenous human genes. Nat Methods. 2013; 10(10):977-9.
PMC: 3794058.
DOI: 10.1038/nmeth.2598.
View
11.
Nelson C, Wu Y, Gemberling M, Oliver M, Waller M, Bohning J
. Long-term evaluation of AAV-CRISPR genome editing for Duchenne muscular dystrophy. Nat Med. 2019; 25(3):427-432.
PMC: 6455975.
DOI: 10.1038/s41591-019-0344-3.
View
12.
Sengupta K, Mishra M, Loro E, Spencer M, Pyle A, Khurana T
. Genome Editing-Mediated Utrophin Upregulation in Duchenne Muscular Dystrophy Stem Cells. Mol Ther Nucleic Acids. 2020; 22:500-509.
PMC: 7554652.
DOI: 10.1016/j.omtn.2020.08.031.
View
13.
Ousterout D, Perez-Pinera P, Thakore P, Kabadi A, Brown M, Qin X
. Reading frame correction by targeted genome editing restores dystrophin expression in cells from Duchenne muscular dystrophy patients. Mol Ther. 2013; 21(9):1718-26.
PMC: 3776627.
DOI: 10.1038/mt.2013.111.
View
14.
Mohanraju P, Makarova K, Zetsche B, Zhang F, Koonin E, van der Oost J
. Diverse evolutionary roots and mechanistic variations of the CRISPR-Cas systems. Science. 2016; 353(6299):aad5147.
DOI: 10.1126/science.aad5147.
View
15.
Gilpatrick T, Lee I, Graham J, Raimondeau E, Bowen R, Heron A
. Targeted nanopore sequencing with Cas9-guided adapter ligation. Nat Biotechnol. 2020; 38(4):433-438.
PMC: 7145730.
DOI: 10.1038/s41587-020-0407-5.
View
16.
Lim K, Maruyama R, Yokota T
. Eteplirsen in the treatment of Duchenne muscular dystrophy. Drug Des Devel Ther. 2017; 11:533-545.
PMC: 5338848.
DOI: 10.2147/DDDT.S97635.
View
17.
Berger S, Berger M, Bantz C, Maskos M, Wagner E
. Performance of nanoparticles for biomedical applications: The / discrepancy. Biophys Rev (Melville). 2024; 3(1):011303.
PMC: 10903387.
DOI: 10.1063/5.0073494.
View
18.
Vlatkovic I
. Non-Immunotherapy Application of LNP-mRNA: Maximizing Efficacy and Safety. Biomedicines. 2021; 9(5).
PMC: 8151051.
DOI: 10.3390/biomedicines9050530.
View
19.
Maeder M, Stefanidakis M, Wilson C, Baral R, Barrera L, Bounoutas G
. Development of a gene-editing approach to restore vision loss in Leber congenital amaurosis type 10. Nat Med. 2019; 25(2):229-233.
DOI: 10.1038/s41591-018-0327-9.
View
20.
Silva G, Poirot L, Galetto R, Smith J, Montoya G, Duchateau P
. Meganucleases and other tools for targeted genome engineering: perspectives and challenges for gene therapy. Curr Gene Ther. 2010; 11(1):11-27.
PMC: 3267165.
DOI: 10.2174/156652311794520111.
View