» Articles » PMID: 36841808

Bright Tm-based Downshifting Luminescence Nanoprobe Operating Around 1800 nm for NIR-IIb and C Bioimaging

Overview
Journal Nat Commun
Specialty Biology
Date 2023 Feb 25
PMID 36841808
Authors
Affiliations
Soon will be listed here.
Abstract

Fluorescence bioimaging based on rare-earth-doped nanocrystals (RENCs) in the shortwave infrared (SWIR, 1000-3000 nm) region has aroused intense interest due to deeper penetration depth and clarity. However, their downshifting emission rarely shows sufficient brightness beyond 1600 nm, especially in NIR-IIc. Here, we present a class of thulium (Tm) self-sensitized RENC fluorescence probes that exhibit bright downshifting luminescence at 1600-2100 nm (NIR-IIb/c) for in vivo bioimaging. An inert shell coating minimizes surface quenching and combines strong cross-relaxation, allowing LiTmF@LiYF NPs to emit these intense downshifting emissions by absorbing NIR photons at 800 nm (large Stokes shift ~1000 nm with a absolute quantum yield of ~14.16%) or 1208 nm (NIR-II and NIR-II). Furthermore, doping with Er for energy trapping achieves four-wavelength NIR irradiation and bright NIR-IIb/c emission. Our results show that Tm-based NPs, as NIR-IIb/c nanoprobes with high signal-to-background ratio and clarity, open new opportunities for future applications and translation into diverse fields.

Citing Articles

NIR-I Activated Orthogonal NIR-IIb/c Emissions in a Lanthanide-Doped Nanoparticle for Fluorescence Imaging and Information Encryption.

Li Q, Huang Y, Zhu H, Zhu Y, Yi Y, Li X Adv Sci (Weinh). 2024; 11(44):e2408097.

PMID: 39348236 PMC: 11600275. DOI: 10.1002/advs.202408097.


A Review of Image Sensors Used in Near-Infrared and Shortwave Infrared Fluorescence Imaging.

Zhu B, Jonathan H Sensors (Basel). 2024; 24(11).

PMID: 38894330 PMC: 11175340. DOI: 10.3390/s24113539.


NIR-II light in clinical oncology: opportunities and challenges.

Zhang Z, Du Y, Shi X, Wang K, Qu Q, Liang Q Nat Rev Clin Oncol. 2024; 21(6):449-467.

PMID: 38693335 DOI: 10.1038/s41571-024-00892-0.


Near-Infrared-Responsive Rare Earth Nanoparticles for Optical Imaging and Wireless Phototherapy.

Du P, Wei Y, Liang Y, An R, Liu S, Lei P Adv Sci (Weinh). 2023; 11(8):e2305308.

PMID: 37946706 PMC: 10885668. DOI: 10.1002/advs.202305308.


High-Performance Hybrid Phototheranostics for NIR-IIb Fluorescence Imaging and NIR-II-Excitable Photothermal Therapy.

Wang Q, Zhang X, Tang Y, Xiong Y, Wang X, Li C Pharmaceutics. 2023; 15(8).

PMID: 37631241 PMC: 10457990. DOI: 10.3390/pharmaceutics15082027.


References
1.
Zuo J, Li Q, Xue B, Li C, Chang Y, Zhang Y . Employing shells to eliminate concentration quenching in photonic upconversion nanostructure. Nanoscale. 2017; 9(23):7941-7946. DOI: 10.1039/c7nr01403a. View

2.
Zhong Y, Ma Z, Wang F, Wang X, Yang Y, Liu Y . In vivo molecular imaging for immunotherapy using ultra-bright near-infrared-IIb rare-earth nanoparticles. Nat Biotechnol. 2019; 37(11):1322-1331. PMC: 6858548. DOI: 10.1038/s41587-019-0262-4. View

3.
Chen Q, Xie X, Huang B, Liang L, Han S, Yi Z . Confining Excitation Energy in Er -Sensitized Upconversion Nanocrystals through Tm -Mediated Transient Energy Trapping. Angew Chem Int Ed Engl. 2017; 56(26):7605-7609. DOI: 10.1002/anie.201703012. View

4.
Zhong Y, Ma Z, Zhu S, Yue J, Zhang M, Antaris A . Boosting the down-shifting luminescence of rare-earth nanocrystals for biological imaging beyond 1500 nm. Nat Commun. 2017; 8(1):737. PMC: 5622117. DOI: 10.1038/s41467-017-00917-6. View

5.
Yang Y, Tu D, Zhang Y, Zhang P, Chen X . Recent advances in design of lanthanide-containing NIR-II luminescent nanoprobes. iScience. 2021; 24(2):102062. PMC: 7873658. DOI: 10.1016/j.isci.2021.102062. View