» Articles » PMID: 34887404

Theranostic Near-infrared-IIb Emitting Nanoprobes for Promoting Immunogenic Radiotherapy and Abscopal Effects Against Cancer Metastasis

Overview
Journal Nat Commun
Specialty Biology
Date 2021 Dec 10
PMID 34887404
Citations 25
Authors
Affiliations
Soon will be listed here.
Abstract

Radiotherapy is an important therapeutic strategy for cancer treatment through direct damage to cancer cells and augmentation of antitumor immune responses. However, the efficacy of radiotherapy is limited by hypoxia-mediated radioresistance and immunosuppression in tumor microenvironment. Here, we construct a stabilized theranostic nanoprobe based on quantum dots emitting in the near-infrared IIb (NIR-IIb, 1,500-1,700 nm) window modified by catalase, arginine-glycine-aspartate peptides and poly(ethylene glycol). We demonstrate that the nanoprobes effectively aggregate in the tumor site to locate the tumor region, thereby realizing precision radiotherapy with few side-effects. In addition, nanoprobes relieve intratumoral hypoxia and reduce the tumor infiltration of immunosuppressive cells. Moreover, the nanoprobes promote the immunogenic cell death of cancer cells to trigger the activation of dendritic cells and enhance T cell-mediated antitumor immunity to inhibit tumor metastasis. Collectively, the nanoprobe-mediated immunogenic radiotherapy can boost the abscopal effect to inhibit tumor metastasis and prolong survival.

Citing Articles

Advances in nanoparticle-based radiotherapy for cancer treatment.

He M, Chen S, Yu H, Fan X, Wu H, Wang Y iScience. 2025; 28(1):111602.

PMID: 39834854 PMC: 11743923. DOI: 10.1016/j.isci.2024.111602.


Monitoring Neovascularization of Malignant Solid Tumors with Horseradish Peroxidase-Functionalized Near-Infrared-II PbS Quantum Dots.

Chen L, Wang Z, Zhang H, Chen L, Zhao L, Liu Z Chem Biomed Imaging. 2024; 1(1):81-90.

PMID: 39474302 PMC: 11504256. DOI: 10.1021/cbmi.3c00006.


Intraductal photothermal ablation: a noninvasive approach for early breast cancer treatment and prevention.

Liu J, Huang B, Rao Y, Guo L, Cai C, Gao D Theranostics. 2024; 14(10):3997-4013.

PMID: 38994019 PMC: 11234271. DOI: 10.7150/thno.97968.


Sensitize Tumor Immunotherapy: Immunogenic Cell Death Inducing Nanosystems.

Peng J, Li S, Ti H Int J Nanomedicine. 2024; 19:5895-5930.

PMID: 38895146 PMC: 11184231. DOI: 10.2147/IJN.S457782.


NIR-II nanoprobes for investigating the glymphatic system function under anesthesia and stroke injury.

Sun B, Fang D, Li W, Li M, Zhu S J Nanobiotechnology. 2024; 22(1):200.

PMID: 38654299 PMC: 11040925. DOI: 10.1186/s12951-024-02481-w.


References
1.
Song G, Cheng L, Chao Y, Yang K, Liu Z . Emerging Nanotechnology and Advanced Materials for Cancer Radiation Therapy. Adv Mater. 2017; 29(32). DOI: 10.1002/adma.201700996. View

2.
De Ruysscher D, Niedermann G, Burnet N, Siva S, Lee A, Hegi-Johnson F . Radiotherapy toxicity. Nat Rev Dis Primers. 2019; 5(1):13. DOI: 10.1038/s41572-019-0064-5. View

3.
Franken N, Rodermond H, Stap J, Haveman J, van Bree C . Clonogenic assay of cells in vitro. Nat Protoc. 2007; 1(5):2315-9. DOI: 10.1038/nprot.2006.339. View

4.
Irvine D, Dane E . Enhancing cancer immunotherapy with nanomedicine. Nat Rev Immunol. 2020; 20(5):321-334. PMC: 7536618. DOI: 10.1038/s41577-019-0269-6. View

5.
DePeaux K, Delgoffe G . Metabolic barriers to cancer immunotherapy. Nat Rev Immunol. 2021; 21(12):785-797. PMC: 8553800. DOI: 10.1038/s41577-021-00541-y. View