» Articles » PMID: 36839072

Heterophase Polymorph of TiO (Anatase, Rutile, Brookite, TiO (B)) for Efficient Photocatalyst: Fabrication and Activity

Overview
Date 2023 Feb 25
PMID 36839072
Authors
Affiliations
Soon will be listed here.
Abstract

TiO exists naturally in three crystalline forms: Anatase, rutile, brookite, and TiO (B). These polymorphs exhibit different properties and consequently different photocatalytic performances. This paper aims to clarify the differences between titanium dioxide polymorphs, and the differences in homophase, biphase, and triphase properties in various photocatalytic applications. However, homophase TiO has various disadvantages such as high recombination rates and low adsorption capacity. Meanwhile, TiO heterophase can effectively stimulate electron transfer from one phase to another causing superior photocatalytic performance. Various studies have reported the biphase of polymorph TiO such as anatase/rutile, anatase/brookite, rutile/brookite, and anatase/TiO (B). In addition, this paper also presents the triphase of the TiO polymorph. This review is mainly focused on information regarding the heterophase of the TiO polymorph, fabrication of heterophase synthesis, and its application as a photocatalyst.

Citing Articles

Optical Properties of Thick TiO-P25 Films.

Politano G Nanomaterials (Basel). 2025; 15(2).

PMID: 39852714 PMC: 11767985. DOI: 10.3390/nano15020099.


Progress in photocatalytic degradation of industrial organic dye by utilising the silver doped titanium dioxide nanocomposite.

Ramesh N, Lai C, Johan M, Mousavi S, Badruddin I, Kumar A Heliyon. 2024; 10(24):e40998.

PMID: 39720083 PMC: 11667620. DOI: 10.1016/j.heliyon.2024.e40998.


Unlocking the potential of titanium dioxide nanoparticles: an insight into green synthesis, optimizations, characterizations, and multifunctional applications.

Ghareeb A, Fouda A, Kishk R, El Kazzaz W Microb Cell Fact. 2024; 23(1):341.

PMID: 39710687 PMC: 11665025. DOI: 10.1186/s12934-024-02609-5.


Photocatalytic Hydrogen Production Using TiO-based Catalysts: A Review.

Bhom F, Isa Y Glob Chall. 2024; 8(11):2400134.

PMID: 39545256 PMC: 11557513. DOI: 10.1002/gch2.202400134.


Comparative Analysis of Anodized TiO Nanotubes and Hydrothermally Synthesized TiO Nanotubes: Morphological, Structural, and Photoelectrochemical Properties.

Sassi S, Bouich A, Bessais B, Khezami L, Soucase B, Hajjaji A Materials (Basel). 2024; 17(21).

PMID: 39517457 PMC: 11546843. DOI: 10.3390/ma17215182.


References
1.
Zhang Y, Xing Z, Liu X, Li Z, Wu X, Jiang J . Ti Self-Doped Blue TiO(B) Single-Crystalline Nanorods for Efficient Solar-Driven Photocatalytic Performance. ACS Appl Mater Interfaces. 2016; 8(40):26851-26859. DOI: 10.1021/acsami.6b09061. View

2.
Cao F, Xiong J, Wu F, Liu Q, Shi Z, Yu Y . Enhanced Photoelectrochemical Performance from Rationally Designed Anatase/Rutile TiO2 Heterostructures. ACS Appl Mater Interfaces. 2016; 8(19):12239-45. DOI: 10.1021/acsami.6b03842. View

3.
Sun X, Chang Y, Cheng Y, Feng Y, Zhang H . Band Alignment-Driven Oxidative Injury to the Skin by Anatase/Rutile Mixed-Phase Titanium Dioxide Nanoparticles Under Sunlight Exposure. Toxicol Sci. 2018; 164(1):300-312. DOI: 10.1093/toxsci/kfy088. View

4.
Barbosa J, Neto D, Freire R, Rocha J, Fechine L, Denardin J . Ultrafast sonochemistry-based approach to coat TiO commercial particles for sunscreen formulation. Ultrason Sonochem. 2018; 48:340-348. DOI: 10.1016/j.ultsonch.2018.06.015. View

5.
Nosaka Y, Nosaka A . Generation and Detection of Reactive Oxygen Species in Photocatalysis. Chem Rev. 2017; 117(17):11302-11336. DOI: 10.1021/acs.chemrev.7b00161. View