» Articles » PMID: 36831335

Autophagosome Biogenesis

Overview
Journal Cells
Publisher MDPI
Date 2023 Feb 25
PMID 36831335
Authors
Affiliations
Soon will be listed here.
Abstract

Autophagy-the lysosomal degradation of cytoplasm-plays a central role in cellular homeostasis and protects cells from potentially harmful agents that may accumulate in the cytoplasm, including pathogens, protein aggregates, and dysfunctional organelles. This process is initiated by the formation of a phagophore membrane, which wraps around a portion of cytoplasm or cargo and closes to form a double-membrane autophagosome. Upon the fusion of the autophagosome with a lysosome, the sequestered material is degraded by lysosomal hydrolases in the resulting autolysosome. Several alternative membrane sources of autophagosomes have been proposed, including the plasma membrane, endosomes, mitochondria, endoplasmic reticulum, lipid droplets, hybrid organelles, and de novo synthesis. Here, we review recent progress in our understanding of how the autophagosome is formed and highlight the proposed role of vesicles that contain the lipid scramblase ATG9 as potential seeds for phagophore biogenesis. We also discuss how the phagophore is sealed by the action of the endosomal sorting complex required for transport (ESCRT) proteins.

Citing Articles

Circular RNA Vav3 mediated ALV-J inhibition of autophagy by modulating the gga-miR-375/CIP2A axis and activating AKT.

Chen L, Xu H, Liu R, Yao Z, Xie Q, Zhang X Poult Sci. 2025; 104(4):104923.

PMID: 39987600 PMC: 11904538. DOI: 10.1016/j.psj.2025.104923.


Heat stress promotes osteogenic and odontogenic differentiation of stem cells from apical papilla via glucose-regulated protein 78-mediated autophagy.

Zhang X, Wei Z, Xu Y J Dent Sci. 2025; 20(1):487-501.

PMID: 39873102 PMC: 11762232. DOI: 10.1016/j.jds.2024.05.007.


MicroRNAs regulating autophagy: opportunities in treating neurodegenerative diseases.

Mohseni M, Behzad G, Farhadi A, Behroozi J, Mohseni H, Valipour B Front Neurosci. 2024; 18:1397106.

PMID: 39582602 PMC: 11582054. DOI: 10.3389/fnins.2024.1397106.


Long non‑coding RNA SNHG1 promotes autophagy in vascular smooth muscle cells induced by facilitating CLEC7A.

Deng H, Teng W, Zhou S, Ye Z, Dong Z, Hu R Mol Med Rep. 2024; 31(1).

PMID: 39513586 PMC: 11564905. DOI: 10.3892/mmr.2024.13385.


Targeted proteomics addresses selectivity and complexity of protein degradation by autophagy.

Leytens A, Benitez-Fernandez R, Jimenez-Garcia C, Roubaty C, Stumpe M, Boya P Autophagy. 2024; 21(2):460-475.

PMID: 39245437 PMC: 11759517. DOI: 10.1080/15548627.2024.2396792.


References
1.
Johansen T, Lamark T . Selective Autophagy: ATG8 Family Proteins, LIR Motifs and Cargo Receptors. J Mol Biol. 2019; 432(1):80-103. DOI: 10.1016/j.jmb.2019.07.016. View

2.
Maruyama T, Alam J, Fukuda T, Kageyama S, Kirisako H, Ishii Y . Membrane perturbation by lipidated Atg8 underlies autophagosome biogenesis. Nat Struct Mol Biol. 2021; 28(7):583-593. DOI: 10.1038/s41594-021-00614-5. View

3.
Soreng K, Munson M, Lamb C, Bjorndal G, Pankiv S, Carlsson S . SNX18 regulates ATG9A trafficking from recycling endosomes by recruiting Dynamin-2. EMBO Rep. 2018; 19(4). PMC: 5891424. DOI: 10.15252/embr.201744837. View

4.
Durgan J, Florey O . Many roads lead to CASM: Diverse stimuli of noncanonical autophagy share a unifying molecular mechanism. Sci Adv. 2022; 8(43):eabo1274. PMC: 9604613. DOI: 10.1126/sciadv.abo1274. View

5.
Martins de Brito O, Scorrano L . Mitofusin 2 tethers endoplasmic reticulum to mitochondria. Nature. 2008; 456(7222):605-10. DOI: 10.1038/nature07534. View