» Articles » PMID: 36830038

Role of Mitophagy in Regulating Intestinal Oxidative Damage

Overview
Date 2023 Feb 25
PMID 36830038
Authors
Affiliations
Soon will be listed here.
Abstract

The mitochondrion is also a major site for maintaining redox homeostasis between reactive oxygen species (ROS) generation and scavenging. The quantity, quality, and functional integrity of mitochondria are crucial for regulating intracellular homeostasis and maintaining the normal physiological function of cells. The role of oxidative stress in human disease is well established, particularly in inflammatory bowel disease and gastrointestinal mucosal diseases. Oxidative stress could result from an imbalance between ROS and the antioxidative system. Mitochondria are both the main sites of production and the main target of ROS. It is a vicious cycle in which initial ROS-induced mitochondrial damage enhanced ROS production that, in turn, leads to further mitochondrial damage and eventually massive intestinal cell death. Oxidative damage can be significantly mitigated by mitophagy, which clears damaged mitochondria. In this review, we aimed to review the molecular mechanisms involved in the regulation of mitophagy and oxidative stress and their relationship in some intestinal diseases. We believe the reviews can provide new ideas and a scientific basis for researching antioxidants and preventing diseases related to oxidative damage.

Citing Articles

Alters Gut Microbiota and Metabolites Composition to Improve High Starch Metabolism in .

Qian L, Lu S, Jiang W, Mu Q, Lin Y, Gu Z Animals (Basel). 2025; 15(4).

PMID: 40003065 PMC: 11852042. DOI: 10.3390/ani15040583.


Energy metabolism and the intestinal barrier: implications for understanding and managing intestinal diseases.

Chen S, Shen C, Zeng X, Sun L, Luo F, Wan R Front Microbiol. 2025; 16:1515364.

PMID: 39959156 PMC: 11826063. DOI: 10.3389/fmicb.2025.1515364.


Progress in the mechanism of functional dyspepsia: roles of mitochondrial autophagy in duodenal abnormalities.

Zhong K, Du X, Niu Y, Li Z, Tao Y, Wu Y Front Med (Lausanne). 2024; 11:1491009.

PMID: 39655235 PMC: 11627220. DOI: 10.3389/fmed.2024.1491009.


MAM-mediated mitophagy and endoplasmic reticulum stress: the hidden regulators of ischemic stroke.

Jia Z, Li H, Xu K, Li R, Yang S, Chen L Front Cell Neurosci. 2024; 18:1470144.

PMID: 39640236 PMC: 11617170. DOI: 10.3389/fncel.2024.1470144.


Effects of 1-Deoxynojirimycin Extracts of Mulberry Leaves on Oxidative Stress and the Function of the Intestinal Tract in Broilers Induced by HO.

Zhao C, Wang M, Li T, Li D, Feng Y, Wang Y Animals (Basel). 2024; 14(22).

PMID: 39595371 PMC: 11591279. DOI: 10.3390/ani14223319.


References
1.
Waltz F, Salinas-Giege T, Englmeier R, Meichel H, Soufari H, Kuhn L . How to build a ribosome from RNA fragments in Chlamydomonas mitochondria. Nat Commun. 2021; 12(1):7176. PMC: 8660880. DOI: 10.1038/s41467-021-27200-z. View

2.
Harper J, Ordureau A, Heo J . Building and decoding ubiquitin chains for mitophagy. Nat Rev Mol Cell Biol. 2018; 19(2):93-108. DOI: 10.1038/nrm.2017.129. View

3.
Chien C, Wu M, Shen S, Ko C, Chen C, Yang L . Activation of JNK contributes to evodiamine-induced apoptosis and G2/M arrest in human colorectal carcinoma cells: a structure-activity study of evodiamine. PLoS One. 2014; 9(6):e99729. PMC: 4069003. DOI: 10.1371/journal.pone.0099729. View

4.
Birgisdottir A, Lamark T, Johansen T . The LIR motif - crucial for selective autophagy. J Cell Sci. 2013; 126(Pt 15):3237-47. DOI: 10.1242/jcs.126128. View

5.
Mangerich A, Dedon P, Fox J, Tannenbaum S, Wogan G . Chemistry meets biology in colitis-associated carcinogenesis. Free Radic Res. 2013; 47(11):958-86. PMC: 4316682. DOI: 10.3109/10715762.2013.832239. View