» Articles » PMID: 36828587

The Planemo Toolkit for Developing, Deploying, and Executing Scientific Data Analyses in Galaxy and Beyond

Overview
Journal Genome Res
Specialty Genetics
Date 2023 Feb 24
PMID 36828587
Authors
Affiliations
Soon will be listed here.
Abstract

There are thousands of well-maintained high-quality open-source software utilities for all aspects of scientific data analysis. For more than a decade, the Galaxy Project has been providing computational infrastructure and a unified user interface for these tools to make them accessible to a wide range of researchers. To streamline the process of integrating tools and constructing workflows as much as possible, we have developed Planemo, a software development kit for tool and workflow developers and Galaxy power users. Here we outline Planemo's implementation and describe its broad range of functionality for designing, testing, and executing Galaxy tools, workflows, and training material. In addition, we discuss the philosophy underlying Galaxy tool and workflow development, and how Planemo encourages the use of development best practices, such as test-driven development, by its users, including those who are not professional software developers.

Citing Articles

microGalaxy: A gateway to tools, workflows, and training for reproducible and FAIR analysis of microbial data.

Nasr E, Amato P, Bhardwaj A, Blankenberg D, Brites D, Cumbo F bioRxiv. 2025; .

PMID: 39764050 PMC: 11703195. DOI: 10.1101/2024.12.23.629682.


KegAlign: Optimizing pairwise alignments with diagonal partitioning.

Gulhan A, Burhans R, Harris R, Kandemir M, Haeussler M, Nekrutenko A bioRxiv. 2024; .

PMID: 39282333 PMC: 11398343. DOI: 10.1101/2024.09.02.610839.


Scalable, accessible, and reproducible reference genome assembly and evaluation in Galaxy.

Lariviere D, Abueg L, Brajuka N, Gallardo-Alba C, Gruning B, Ko B bioRxiv. 2023; .

PMID: 37425881 PMC: 10327048. DOI: 10.1101/2023.06.28.546576.


Galaxy Training: A powerful framework for teaching!.

Hiltemann S, Rasche H, Gladman S, Hotz H, Lariviere D, Blankenberg D PLoS Comput Biol. 2023; 19(1):e1010752.

PMID: 36622853 PMC: 9829167. DOI: 10.1371/journal.pcbi.1010752.

References
1.
Vivian J, Rao A, Nothaft F, Ketchum C, Armstrong J, Novak A . Toil enables reproducible, open source, big biomedical data analyses. Nat Biotechnol. 2017; 35(4):314-316. PMC: 5546205. DOI: 10.1038/nbt.3772. View

2.
Batut B, Hiltemann S, Bagnacani A, Baker D, Bhardwaj V, Blank C . Community-Driven Data Analysis Training for Biology. Cell Syst. 2018; 6(6):752-758.e1. PMC: 6296361. DOI: 10.1016/j.cels.2018.05.012. View

3.
Molder F, Jablonski K, Letcher B, Hall M, Tomkins-Tinch C, Sochat V . Sustainable data analysis with Snakemake. F1000Res. 2021; 10:33. PMC: 8114187. DOI: 10.12688/f1000research.29032.2. View

4.
Sloggett C, Goonasekera N, Afgan E . BioBlend: automating pipeline analyses within Galaxy and CloudMan. Bioinformatics. 2013; 29(13):1685-6. PMC: 4288140. DOI: 10.1093/bioinformatics/btt199. View

5.
Maier W, Bray S, van den Beek M, Bouvier D, Coraor N, Miladi M . Ready-to-use public infrastructure for global SARS-CoV-2 monitoring. Nat Biotechnol. 2021; 39(10):1178-1179. PMC: 8845060. DOI: 10.1038/s41587-021-01069-1. View