» Articles » PMID: 36824274

Transcriptome, Proteome, and Protein Synthesis Within the Intracellular Cytomatrix

Abstract

Despite the knowledge that protein translation and various metabolic reactions that create and sustain cellular life occur in the cytoplasm, the structural organization within the cytoplasm remains unclear. Recent models indicate that cytoplasm contains viscous fluid and elastic solid phases. We separated these viscous fluid and solid elastic compartments, which we call the cytosol and cytomatrix, respectively. The distinctive composition of the cytomatrix included structural proteins, ribosomes, and metabolome enzymes. High-throughput analysis revealed unique biosynthetic pathways within the cytomatrix. Enrichment of biosynthetic pathways in the cytomatrix indicated the presence of immobilized biocatalysis. Enzymatic immobilization and segregation can surmount spatial impediments, and the local pathway segregation may form cytoplasmic organelles. Protein translation was reprogrammed within the cytomatrix under the restriction of protein synthesis by drug treatment. The cytosol and cytomatrix are an elaborately interconnected network that promotes operational flexibility in healthy cells and the survival of malignant cells.

Citing Articles

Roles of the CCR4-Not complex in translation and dynamics of co-translation events.

Collart M, Audebert L, Bushell M Wiley Interdiscip Rev RNA. 2023; :e1827.

PMID: 38009591 PMC: 10909573. DOI: 10.1002/wrna.1827.

References
1.
Blobel G . Three-dimensional organization of chromatids by nuclear envelope-associated structures. Cold Spring Harb Symp Quant Biol. 2010; 75:545-54. DOI: 10.1101/sqb.2010.75.004. View

2.
Landon A, Muniandy P, Shetty A, Lehrmann E, Volpon L, Houng S . MNKs act as a regulatory switch for eIF4E1 and eIF4E3 driven mRNA translation in DLBCL. Nat Commun. 2014; 5:5413. PMC: 4238046. DOI: 10.1038/ncomms6413. View

3.
Keppetipola N, Sharma S, Li Q, Black D . Neuronal regulation of pre-mRNA splicing by polypyrimidine tract binding proteins, PTBP1 and PTBP2. Crit Rev Biochem Mol Biol. 2012; 47(4):360-78. PMC: 3422667. DOI: 10.3109/10409238.2012.691456. View

4.
Schliwa M . The evolving complexity of cytoplasmic structure. Nat Rev Mol Cell Biol. 2002; 3(4):291-6. DOI: 10.1038/nrm781. View

5.
Andrews S, Gilley J, Coleman M . Difference Tracker: ImageJ plugins for fully automated analysis of multiple axonal transport parameters. J Neurosci Methods. 2010; 193(2):281-7. DOI: 10.1016/j.jneumeth.2010.09.007. View