» Articles » PMID: 36816615

Discovery of DNA Aptamers Targeting SARS-CoV-2 Nucleocapsid Protein and Protein-binding Epitopes for Label-free COVID-19 Diagnostics

Overview
Publisher Cell Press
Date 2023 Feb 23
PMID 36816615
Authors
Affiliations
Soon will be listed here.
Abstract

The spread of COVID-19 has affected billions of people across the globe, and the diagnosis of viral infection still needs improvement. Because of high immunogenicity and abundant expression during viral infection, SARS-CoV-2 nucleocapsid (N) protein could be an important diagnostic marker. This study aimed to develop a label-free optical aptasensor fabricated with a novel single-stranded DNA aptamer to detect the N protein. The N-binding aptamers selected using asymmetric-emulsion PCR-SELEX and their binding affinity and cross-reactivity were characterized by biolayer interferometry. The tNSP3 aptamer (44 nt) was identified to bind the N protein of wild type and Delta and Omicron variants with high affinity (K in the range of 0.6-3.5 nM). Utilizing tNSP3 to detect the N protein spiked in human saliva evinced the potential of this aptamer with a limit of detection of 4.5 nM. Mass spectrometry analysis was performed along with molecular dynamics simulation to obtain an insight into how tNSP3 binds to the N protein. The identified epitope peptides are localized within the RNA-binding domain and C terminus of the N protein. Hence, we confirmed the performance of this aptamer as an analytical tool for COVID-19 diagnosis.

Citing Articles

SPR Biosensor Based on Bilayer MoS for SARS-CoV-2 Sensing.

Tene T, Bellucci S, Vacacela Gomez C Biosensors (Basel). 2025; 15(1).

PMID: 39852072 PMC: 11763928. DOI: 10.3390/bios15010021.


Bioinformatics in Russia: history and present-day landscape.

Nawaz M, Pamirsky I, Golokhvast K Brief Bioinform. 2024; 25(6).

PMID: 39402695 PMC: 11473191. DOI: 10.1093/bib/bbae513.


A compact stem-loop DNA aptamer targets a uracil-binding pocket in the SARS-CoV-2 nucleocapsid RNA-binding domain.

Esler M, Belica C, Rollie J, Brown W, Moghadasi S, Shi K Nucleic Acids Res. 2024; 52(21):13138-13151.

PMID: 39380503 PMC: 11602162. DOI: 10.1093/nar/gkae874.


Overcoming Limited Access to Virus Infection Rapid Testing: Development of a Lateral Flow Test for SARS-CoV-2 with Locally Available Resources.

Peri Ibanez E, Mazzeo A, Silva C, Juncos M, Costa Navarro G, Pallares H Biosensors (Basel). 2024; 14(9).

PMID: 39329791 PMC: 11431090. DOI: 10.3390/bios14090416.


Aptamers and Nanobodies as New Bioprobes for SARS-CoV-2 Diagnostic and Therapeutic System Applications.

Park K, Park T, Lee J, Hwang S, Choi A, Pack S Biosensors (Basel). 2024; 14(3).

PMID: 38534253 PMC: 10968798. DOI: 10.3390/bios14030146.


References
1.
Lu R, Zhao X, Li J, Niu P, Yang B, Wu H . Genomic characterisation and epidemiology of 2019 novel coronavirus: implications for virus origins and receptor binding. Lancet. 2020; 395(10224):565-574. PMC: 7159086. DOI: 10.1016/S0140-6736(20)30251-8. View

2.
Cennamo N, Pasquardini L, Arcadio F, Lunelli L, Vanzetti L, Carafa V . SARS-CoV-2 spike protein detection through a plasmonic D-shaped plastic optical fiber aptasensor. Talanta. 2021; 233:122532. PMC: 8133803. DOI: 10.1016/j.talanta.2021.122532. View

3.
Boniecki M, Lach G, Dawson W, Tomala K, Lukasz P, Soltysinski T . SimRNA: a coarse-grained method for RNA folding simulations and 3D structure prediction. Nucleic Acids Res. 2015; 44(7):e63. PMC: 4838351. DOI: 10.1093/nar/gkv1479. View

4.
Yang J, Yan R, Roy A, Xu D, Poisson J, Zhang Y . The I-TASSER Suite: protein structure and function prediction. Nat Methods. 2014; 12(1):7-8. PMC: 4428668. DOI: 10.1038/nmeth.3213. View

5.
Cox J, Mann M . MaxQuant enables high peptide identification rates, individualized p.p.b.-range mass accuracies and proteome-wide protein quantification. Nat Biotechnol. 2008; 26(12):1367-72. DOI: 10.1038/nbt.1511. View