» Articles » PMID: 36814847

MINE is a Method for Detecting Spatial Density of Regulatory Chromatin Interactions Based on a Multi-modal Network

Overview
Specialty Cell Biology
Date 2023 Feb 23
PMID 36814847
Authors
Affiliations
Soon will be listed here.
Abstract

Chromatin interactions play essential roles in chromatin conformation and gene expression. However, few tools exist to analyze the spatial density of regulatory chromatin interactions (SD-RCI). Here, we present the multi-modal network (MINE) toolkit, including MINE-Loop, MINE-Density, and MINE-Viewer. The MINE-Loop network aims to enhance the detection of RCIs, MINE-Density quantifies the SD--RCI, and MINE-Viewer facilitates 3D visualization of the density of chromatin interactions and participating regulatory factors (e.g., transcription factors). We applied MINE to investigate the relationship between the SD-RCI and chromatin volume change in HeLa cells before and after liquid-liquid phase separation. Changes in SD-RCI before and after treating the HeLa cells with 1,6-hexanediol suggest that changes in chromatin organization was related to the degree of activation or repression of genes. Together, the MINE toolkit enables quantitative studies on different aspects of chromatin conformation and regulatory activity.

Citing Articles

SEE: A Method for Predicting the Dynamics of Chromatin Conformation Based on Single-Cell Gene Expression.

Li M, Yang Y, Wu R, Gong H, Yuan Z, Wang J Adv Sci (Weinh). 2025; 12(8):e2406413.

PMID: 39778075 PMC: 11848634. DOI: 10.1002/advs.202406413.


[Advances in methods and applications of single-cell Hi-C data analysis].

Gong H, Ma F, Zhang X Sheng Wu Yi Xue Gong Cheng Xue Za Zhi. 2023; 40(5):1033-1039.

PMID: 37879935 PMC: 10600426. DOI: 10.7507/1001-5515.202303046.


TOAST: A novel method for identifying topologically associated domains based on graph auto-encoders and clustering.

Gong H, Zhang D, Zhang X Comput Struct Biotechnol J. 2023; 21:4759-4768.

PMID: 37822562 PMC: 10562672. DOI: 10.1016/j.csbj.2023.09.019.


Calculating the spatial density of regulatory chromatin interactions using multi-modal datasets from the same cell line.

Gong H, Li M, Ji M, Zhang X, Yuan Z, Zhang S STAR Protoc. 2023; 4(2):102188.

PMID: 37000618 PMC: 10068612. DOI: 10.1016/j.xpro.2023.102188.

References
1.
Zhang Y, An L, Xu J, Zhang B, Zheng W, Hu M . Enhancing Hi-C data resolution with deep convolutional neural network HiCPlus. Nat Commun. 2018; 9(1):750. PMC: 5821732. DOI: 10.1038/s41467-018-03113-2. View

2.
Cao Y, Chen Z, Chen X, Ai D, Chen G, McDermott J . Accurate loop calling for 3D genomic data with cLoops. Bioinformatics. 2019; 36(3):666-675. DOI: 10.1093/bioinformatics/btz651. View

3.
Lagler T, Abnousi A, Hu M, Yang Y, Li Y . HiC-ACT: improved detection of chromatin interactions from Hi-C data via aggregated Cauchy test. Am J Hum Genet. 2021; 108(2):257-268. PMC: 7895999. DOI: 10.1016/j.ajhg.2021.01.009. View

4.
Ryba T, Hiratani I, Lu J, Itoh M, Kulik M, Zhang J . Evolutionarily conserved replication timing profiles predict long-range chromatin interactions and distinguish closely related cell types. Genome Res. 2010; 20(6):761-70. PMC: 2877573. DOI: 10.1101/gr.099655.109. View

5.
Li G, Chen Y, Snyder M, Zhang M . ChIA-PET2: a versatile and flexible pipeline for ChIA-PET data analysis. Nucleic Acids Res. 2016; 45(1):e4. PMC: 5224499. DOI: 10.1093/nar/gkw809. View