» Articles » PMID: 36809235

Resonant Learning in Scale-free Networks

Overview
Specialty Biology
Date 2023 Feb 22
PMID 36809235
Authors
Affiliations
Soon will be listed here.
Abstract

Large networks of interconnected components, such as genes or machines, can coordinate complex behavioral dynamics. One outstanding question has been to identify the design principles that allow such networks to learn new behaviors. Here, we use Boolean networks as prototypes to demonstrate how periodic activation of network hubs provides a network-level advantage in evolutionary learning. Surprisingly, we find that a network can simultaneously learn distinct target functions upon distinct hub oscillations. We term this emergent property resonant learning, as the new selected dynamical behaviors depend on the choice of the period of the hub oscillations. Furthermore, this procedure accelerates the learning of new behaviors by an order of magnitude faster than without oscillations. While it is well-established that modular network architecture can be selected through evolutionary learning to produce different network behaviors, forced hub oscillations emerge as an alternative evolutionary learning strategy for which network modularity is not necessarily required.

References
1.
Albert I, Thakar J, Li S, Zhang R, Albert R . Boolean network simulations for life scientists. Source Code Biol Med. 2008; 3:16. PMC: 2603008. DOI: 10.1186/1751-0473-3-16. View

2.
Balaban N, Merrin J, Chait R, Kowalik L, Leibler S . Bacterial persistence as a phenotypic switch. Science. 2004; 305(5690):1622-5. DOI: 10.1126/science.1099390. View

3.
Stern M . Emergence of homeostasis and "noise imprinting" in an evolution model. Proc Natl Acad Sci U S A. 1999; 96(19):10746-51. PMC: 17954. DOI: 10.1073/pnas.96.19.10746. View

4.
Echlin M, Aguilar B, Notarangelo M, Gibbs D, Shmulevich I . Flexibility of Boolean Network Reservoir Computers in Approximating Arbitrary Recursive and Non-Recursive Binary Filters. Entropy (Basel). 2020; 20(12). PMC: 7512538. DOI: 10.3390/e20120954. View

5.
Moffitt J, Lee J, Cluzel P . The single-cell chemostat: an agarose-based, microfluidic device for high-throughput, single-cell studies of bacteria and bacterial communities. Lab Chip. 2012; 12(8):1487-94. PMC: 3646658. DOI: 10.1039/c2lc00009a. View