» Articles » PMID: 36795852

Blood Vessel Organoids for Development and Disease

Overview
Journal Circ Res
Date 2023 Feb 16
PMID 36795852
Authors
Affiliations
Soon will be listed here.
Abstract

Despite enormous advances, cardiovascular disorders are still a major threat to global health and are responsible for one-third of deaths worldwide. Research for new therapeutics and the investigation of their effects on vascular parameters is often limited by species-specific pathways and a lack of high-throughput methods. The complex 3-dimensional environment of blood vessels, intricate cellular crosstalks, and organ-specific architectures further complicate the quest for a faithful human in vitro model. The development of novel organoid models of various tissues such as brain, gut, and kidney signified a leap for the field of personalized medicine and disease research. By utilizing either embryonic- or patient-derived stem cells, different developmental and pathological mechanisms can be modeled and investigated in a controlled in vitro environment. We have recently developed self-organizing human capillary blood vessel organoids that recapitulate key processes of vasculogenesis, angiogenesis, and diabetic vasculopathy. Since then, this organoid system has been utilized as a model for other disease processes, refined, and adapted for organ specificity. In this review, we will discuss novel and alternative approaches to blood vessel engineering and explore the cellular identity of engineered blood vessels in comparison to in vivo vasculature. Future perspectives and the therapeutic potential of blood vessel organoids will be discussed.

Citing Articles

Advances, challenges and future applications of liver organoids in experimental regenerative medicine.

Gong D, Mo J, Zhai M, Zhou F, Wang G, Ma S Front Med (Lausanne). 2025; 11:1521851.

PMID: 39927267 PMC: 11804114. DOI: 10.3389/fmed.2024.1521851.


The Multifaceted Roles of BACH1 in Disease: Implications for Biological Functions and Therapeutic Applications.

Wei X, He Y, Yu Y, Tang S, Liu R, Guo J Adv Sci (Weinh). 2025; 12(10):e2412850.

PMID: 39887888 PMC: 11905017. DOI: 10.1002/advs.202412850.


Mechanisms of (Fisch.) Bge. var. mongholicus (Bge.) Hsiao (huang qi) and (Oliv.) Diels (dang gui) in Ameliorating Hypoxia and Angiogenesis to Delay Pulmonary Nodule Malignant Transformation.

Guo Y, Yang P, Wu Z, Zhang S, You F Integr Cancer Ther. 2025; 24:15347354241311917.

PMID: 39882753 PMC: 11780663. DOI: 10.1177/15347354241311917.


Revolutionizing cardiovascular research: Human organoids as a Beacon of hope for understanding and treating cardiovascular diseases.

Li J, Li Y, Song G, Wang H, Zhang Q, Wang M Mater Today Bio. 2025; 30():101396.

PMID: 39802826 PMC: 11719415. DOI: 10.1016/j.mtbio.2024.101396.


Application of tumor organoids simulating the tumor microenvironment in basic and clinical research of tumor immunotherapy.

Li Y, Liao W, Sun L Zhong Nan Da Xue Xue Bao Yi Xue Ban. 2025; 49(8):1316-1326.

PMID: 39788520 PMC: 11628225. DOI: 10.11817/j.issn.1672-7347.2024.240187.