6.
Almagro-Moreno S, Boyd E
. Bacterial catabolism of nonulosonic (sialic) acid and fitness in the gut. Gut Microbes. 2011; 1(1):45-50.
PMC: 3035139.
DOI: 10.4161/gmic.1.1.10386.
View
7.
Barua D
. The global epidemiology of cholera in recent years. Proc R Soc Med. 1972; 65(5):423-8.
PMC: 1643924.
View
8.
Bell A, Juge N
. Mucosal glycan degradation of the host by the gut microbiota. Glycobiology. 2020; 31(6):691-696.
PMC: 8252862.
DOI: 10.1093/glycob/cwaa097.
View
9.
Bell A, Severi E, Lee M, Monaco S, Latousakis D, Angulo J
. Uncovering a novel molecular mechanism for scavenging sialic acids in bacteria. J Biol Chem. 2020; 295(40):13724-13736.
PMC: 7535918.
DOI: 10.1074/jbc.RA120.014454.
View
10.
Benitez J, Garcia L, Silva A, Garcia H, Fando R, Cedre B
. Preliminary assessment of the safety and immunogenicity of a new CTXPhi-negative, hemagglutinin/protease-defective El Tor strain as a cholera vaccine candidate. Infect Immun. 1999; 67(2):539-45.
PMC: 96352.
DOI: 10.1128/IAI.67.2.539-545.1999.
View
11.
Benitez J, Silva A, Finkelstein R
. Environmental signals controlling production of hemagglutinin/protease in Vibrio cholerae. Infect Immun. 2001; 69(10):6549-53.
PMC: 98796.
DOI: 10.1128/IAI.69.10.6549-6553.2001.
View
12.
Berche P, Poyart C, Abachin E, Lelievre H, Vandepitte J, DODIN A
. The novel epidemic strain O139 is closely related to the pandemic strain O1 of Vibrio cholerae. J Infect Dis. 1994; 170(3):701-4.
DOI: 10.1093/infdis/170.3.701.
View
13.
Bhattacharya S, Goswami A, Bhattacharya M, Dutta D, Deb A, Deb M
. Epidemic of Vibrio cholerae 0139 in Calcutta. Indian J Med Res. 1994; 100:213-6.
View
14.
Bhattacharya T, Chatterjee S, Maiti D, Bhadra R, Takeda Y, Nair G
. Molecular analysis of the rstR and orfU genes of the CTX prophages integrated in the small chromosomes of environmental Vibrio cholerae non-O1, non-O139 strains. Environ Microbiol. 2006; 8(3):526-634.
DOI: 10.1111/j.1462-2920.2005.00932.x.
View
15.
Boyd E, Heilpern A, Waldor M
. Molecular analyses of a putative CTXphi precursor and evidence for independent acquisition of distinct CTX(phi)s by toxigenic Vibrio cholerae. J Bacteriol. 2000; 182(19):5530-8.
PMC: 110998.
DOI: 10.1128/JB.182.19.5530-5538.2000.
View
16.
Campos E, Montella C, Garces F, Baldoma L, Aguilar J, Badia J
. Aerobic L-ascorbate metabolism and associated oxidative stress in Escherichia coli. Microbiology (Reading). 2007; 153(Pt 10):3399-3408.
DOI: 10.1099/mic.0.2007/009613-0.
View
17.
Campos E, de la Riva L, Garces F, Gimenez R, Aguilar J, Baldoma L
. The yiaKLX1X2PQRS and ulaABCDEFG gene systems are required for the aerobic utilization of L-ascorbate in Klebsiella pneumoniae strain 13882 with L-ascorbate-6-phosphate as the inducer. J Bacteriol. 2008; 190(20):6615-24.
PMC: 2566198.
DOI: 10.1128/JB.00815-08.
View
18.
Chatterjee I
. Evolution and the biosynthesis of ascorbic acid. Science. 1973; 182(4118):1271-2.
DOI: 10.1126/science.182.4118.1271.
View
19.
Chen Y, Johnson J, Pusch G, Morris Jr J, Stine O
. The genome of non-O1 Vibrio cholerae NRT36S demonstrates the presence of pathogenic mechanisms that are distinct from those of O1 Vibrio cholerae. Infect Immun. 2007; 75(5):2645-7.
PMC: 1865779.
DOI: 10.1128/IAI.01317-06.
View
20.
Chiang S, Mekalanos J
. Use of signature-tagged transposon mutagenesis to identify Vibrio cholerae genes critical for colonization. Mol Microbiol. 1998; 27(4):797-805.
DOI: 10.1046/j.1365-2958.1998.00726.x.
View