» Articles » PMID: 36763662

A Highly Specific CRISPR-Cas12j Nuclease Enables Allele-specific Genome Editing

Overview
Journal Sci Adv
Specialties Biology
Science
Date 2023 Feb 10
PMID 36763662
Authors
Affiliations
Soon will be listed here.
Abstract

The CRISPR-Cas system can treat autosomal dominant diseases by nonhomologous end joining (NHEJ) gene disruption of mutant alleles. However, many single-nucleotide mutations cannot be discriminated from wild-type alleles by current CRISPR-Cas systems. Here, we functionally screened six Cas12j nucleases and determined Cas12j-8 as an ideal genome editor with a hypercompact size. Cas12j-8 displayed comparable activity to AsCas12a and Un1Cas12f1. Cas12j-8 is a highly specific nuclease sensitive to single-nucleotide mismatches in the protospacer adjacent motif (PAM)-proximal region. We experimentally proved that Cas12j-8 enabled allele-specific disruption of genes with a single-nucleotide polymorphism (SNP). Cas12j-8 recognizes a simple TTN PAM that provides for high target site density. In silico analysis reveals that Cas12j-8 enables allele-specific disruption of 25,931 clinically relevant variants in the ClinVar database, and 485,130,147 SNPs in the dbSNP database. Therefore, Cas12j-8 would be particularly suitable for therapeutic applications.

Citing Articles

Efforts to Downsize Base Editors for Clinical Applications.

Song B Int J Mol Sci. 2025; 26(5).

PMID: 40076976 PMC: 11900391. DOI: 10.3390/ijms26052357.


Engineering of SauriCas9 with enhanced specificity.

Zhang X, Tao C, Li M, Zhang S, Liang P, Huang Y Mol Ther Nucleic Acids. 2025; 36(1):102455.

PMID: 40027883 PMC: 11869866. DOI: 10.1016/j.omtn.2025.102455.


Intein-mediated split Cas9 for genome editing in plants.

Hu D, Hu L, Lu Y, Dong X, Cao X, Bai S Front Genome Ed. 2025; 6():1506468.

PMID: 39845892 PMC: 11750852. DOI: 10.3389/fgeed.2024.1506468.


Engineering of CRISPR-Cas PAM recognition using deep learning of vast evolutionary data.

Nayfach S, Bhatnagar A, Novichkov A, Estevam G, Kim N, Hill E bioRxiv. 2025; .

PMID: 39829748 PMC: 11741284. DOI: 10.1101/2025.01.06.631536.


Research Progress and Application of Miniature CRISPR-Cas12 System in Gene Editing.

Xuan Q, Wang J, Nie Y, Fang C, Liang W Int J Mol Sci. 2024; 25(23).

PMID: 39684395 PMC: 11641405. DOI: 10.3390/ijms252312686.


References
1.
Hu Z, Zhang C, Wang S, Gao S, Wei J, Li M . Discovery and engineering of small SlugCas9 with broad targeting range and high specificity and activity. Nucleic Acids Res. 2021; 49(7):4008-4019. PMC: 8053104. DOI: 10.1093/nar/gkab148. View

2.
Ran F, Cong L, Yan W, Scott D, Gootenberg J, Kriz A . In vivo genome editing using Staphylococcus aureus Cas9. Nature. 2015; 520(7546):186-91. PMC: 4393360. DOI: 10.1038/nature14299. View

3.
Zetsche B, Gootenberg J, Abudayyeh O, Slaymaker I, Makarova K, Essletzbichler P . Cpf1 is a single RNA-guided endonuclease of a class 2 CRISPR-Cas system. Cell. 2015; 163(3):759-71. PMC: 4638220. DOI: 10.1016/j.cell.2015.09.038. View

4.
Tsai S, Zheng Z, Nguyen N, Liebers M, Topkar V, Thapar V . GUIDE-seq enables genome-wide profiling of off-target cleavage by CRISPR-Cas nucleases. Nat Biotechnol. 2014; 33(2):187-197. PMC: 4320685. DOI: 10.1038/nbt.3117. View

5.
Sherry S, Ward M, Kholodov M, Baker J, Phan L, Smigielski E . dbSNP: the NCBI database of genetic variation. Nucleic Acids Res. 2000; 29(1):308-11. PMC: 29783. DOI: 10.1093/nar/29.1.308. View