» Articles » PMID: 36747054

Programmable Synthetic Biomolecular Condensates for Cellular Control

Abstract

The formation of biomolecular condensates mediated by a coupling of associative and segregative phase transitions plays a critical role in controlling diverse cellular functions in nature. This has inspired the use of phase transitions to design synthetic systems. While design rules of phase transitions have been established for many synthetic intrinsically disordered proteins, most efforts have focused on investigating their phase behaviors in a test tube. Here, we present a rational engineering approach to program the formation and physical properties of synthetic condensates to achieve intended cellular functions. We demonstrate this approach through targeted plasmid sequestration and transcription regulation in bacteria and modulation of a protein circuit in mammalian cells. Our approach lays the foundation for engineering designer condensates for synthetic biology applications.

Citing Articles

Programmable solid-state condensates for spatiotemporal control of mammalian gene expression.

Wang Y, Jiang J, Xiong Q, Li S, Shao J, Xie M Nat Chem Biol. 2025; .

PMID: 40087540 DOI: 10.1038/s41589-025-01860-0.


Aging-dependent evolving electrochemical potentials of biomolecular condensates regulate their physicochemical activities.

Yu W, Guo X, Xia Y, Ma Y, Tong Z, Yang L Nat Chem. 2025; .

PMID: 40074825 DOI: 10.1038/s41557-025-01762-7.


A globular protein exhibits rare phase behavior and forms chemically regulated orthogonal condensates in cells.

Nie J, Zhang X, Hu Z, Wang W, Schroer M, Ren J Nat Commun. 2025; 16(1):2449.

PMID: 40069234 PMC: 11897184. DOI: 10.1038/s41467-025-57886-4.


Spontaneous Self-Organized Order Emerging From Intrinsically Disordered Protein Polymers.

Acosta S, Rodriguez-Alonso P, Chaskovska V, Fernandez-Fernandez J, Rodriguez-Cabello J Wiley Interdiscip Rev Nanomed Nanobiotechnol. 2025; 17(1):e70003.

PMID: 39950263 PMC: 11826379. DOI: 10.1002/wnan.70003.


Synthetic biomolecular condensates enhance translation from a target mRNA in living cells.

Shapiro D, Deshpande S, Eghtesadi S, Zhong M, Fontes C, Fiflis D Nat Chem. 2025; 17(3):448-456.

PMID: 39929988 DOI: 10.1038/s41557-024-01706-7.


References
1.
Bremer A, Farag M, Borcherds W, Peran I, Martin E, Pappu R . Deciphering how naturally occurring sequence features impact the phase behaviours of disordered prion-like domains. Nat Chem. 2021; 14(2):196-207. PMC: 8818026. DOI: 10.1038/s41557-021-00840-w. View

2.
Jalal A, Tran N, Stevenson C, Chan E, Lo R, Tan X . Diversification of DNA-Binding Specificity by Permissive and Specificity-Switching Mutations in the ParB/Noc Protein Family. Cell Rep. 2020; 32(3):107928. PMC: 7383237. DOI: 10.1016/j.celrep.2020.107928. View

3.
Roden C, Gladfelter A . RNA contributions to the form and function of biomolecular condensates. Nat Rev Mol Cell Biol. 2020; 22(3):183-195. PMC: 7785677. DOI: 10.1038/s41580-020-0264-6. View

4.
Osorio-Valeriano M, Altegoer F, Das C, Steinchen W, Panis G, Connolley L . The CTPase activity of ParB determines the size and dynamics of prokaryotic DNA partition complexes. Mol Cell. 2021; 81(19):3992-4007.e10. DOI: 10.1016/j.molcel.2021.09.004. View

5.
Browning D, Busby S . The regulation of bacterial transcription initiation. Nat Rev Microbiol. 2004; 2(1):57-65. DOI: 10.1038/nrmicro787. View