» Articles » PMID: 32029630

Valence and Patterning of Aromatic Residues Determine the Phase Behavior of Prion-like Domains

Overview
Journal Science
Specialty Science
Date 2020 Feb 8
PMID 32029630
Citations 442
Authors
Affiliations
Soon will be listed here.
Abstract

Prion-like domains (PLDs) can drive liquid-liquid phase separation (LLPS) in cells. Using an integrative biophysical approach that includes nuclear magnetic resonance spectroscopy, small-angle x-ray scattering, and multiscale simulations, we have uncovered sequence features that determine the overall phase behavior of PLDs. We show that the numbers (valence) of aromatic residues in PLDs determine the extent of temperature-dependent compaction of individual molecules in dilute solutions. The valence of aromatic residues also determines full binodals that quantify concentrations of PLDs within coexisting dilute and dense phases as a function of temperature. We also show that uniform patterning of aromatic residues is a sequence feature that promotes LLPS while inhibiting aggregation. Our findings lead to the development of a numerical stickers-and-spacers model that enables predictions of full binodals of PLDs from their sequences.

Citing Articles

Toward universal models for collective interactions in biomolecular condensates.

Milanetti E, Manjunatha K, Ruocco G, Maritan A, Fuxreiter M Biophys Rev (Melville). 2025; 6(1):011401.

PMID: 40060928 PMC: 11890157. DOI: 10.1063/5.0244227.


Chemically Informed Coarse-Graining of Electrostatic Forces in Charge-Rich Biomolecular Condensates.

R Tejedor A, Aguirre Gonzalez A, Maristany M, Chew P, Russell K, Ramirez J ACS Cent Sci. 2025; 11(2):302-321.

PMID: 40028356 PMC: 11869137. DOI: 10.1021/acscentsci.4c01617.


Epsin1 enforces a condensation-dependent checkpoint for ubiquitylated cargo during clathrin-mediated endocytosis.

Sarkar S, Liu H, Yuan F, Malady B, Wang L, Perez J bioRxiv. 2025; .

PMID: 39990390 PMC: 11844442. DOI: 10.1101/2025.02.12.637885.


Intrinsically disordered regions as facilitators of the transcription factor target search.

Jonas F, Navon Y, Barkai N Nat Rev Genet. 2025; .

PMID: 39984675 DOI: 10.1038/s41576-025-00816-3.


Nucleotide-specific RNA conformations and dynamics within ribonucleoprotein condensates.

Wang T, Hu Q, Fronhofer S, Pollack L bioRxiv. 2025; .

PMID: 39975191 PMC: 11839098. DOI: 10.1101/2025.02.06.636987.


References
1.
Nott T, Petsalaki E, Farber P, Jervis D, Fussner E, Plochowietz A . Phase transition of a disordered nuage protein generates environmentally responsive membraneless organelles. Mol Cell. 2015; 57(5):936-947. PMC: 4352761. DOI: 10.1016/j.molcel.2015.01.013. View

2.
Holehouse A, Garai K, Lyle N, Vitalis A, Pappu R . Quantitative assessments of the distinct contributions of polypeptide backbone amides versus side chain groups to chain expansion via chemical denaturation. J Am Chem Soc. 2015; 137(8):2984-95. PMC: 4418562. DOI: 10.1021/ja512062h. View

3.
Wei M, Elbaum-Garfinkle S, Holehouse A, Chen C, Feric M, Arnold C . Phase behaviour of disordered proteins underlying low density and high permeability of liquid organelles. Nat Chem. 2017; 9(11):1118-1125. PMC: 9719604. DOI: 10.1038/nchem.2803. View

4.
Hopkins J, Gillilan R, Skou S . : improvements to a free open-source program for small-angle X-ray scattering data reduction and analysis. J Appl Crystallogr. 2017; 50(Pt 5):1545-1553. PMC: 5627684. DOI: 10.1107/S1600576717011438. View

5.
Dignon G, Zheng W, Best R, Kim Y, Mittal J . Relation between single-molecule properties and phase behavior of intrinsically disordered proteins. Proc Natl Acad Sci U S A. 2018; 115(40):9929-9934. PMC: 6176625. DOI: 10.1073/pnas.1804177115. View