6.
Mallolas J
. Darunavir Stands Up as Preferred HIV Protease Inhibitor. AIDS Rev. 2017; 19(2):105-112.
View
7.
Aoki M, Das D, Hayashi H, Aoki-Ogata H, Takamatsu Y, Ghosh A
. Mechanism of Darunavir (DRV)'s High Genetic Barrier to HIV-1 Resistance: A Key V32I Substitution in Protease Rarely Occurs, but Once It Occurs, It Predisposes HIV-1 To Develop DRV Resistance. mBio. 2018; 9(2).
PMC: 5844992.
DOI: 10.1128/mBio.02425-17.
View
8.
Ghosh A, Xia Z, Kovela S, Robinson W, Johnson M, Kneller D
. Potent HIV-1 Protease Inhibitors Containing Carboxylic and Boronic Acids: Effect on Enzyme Inhibition and Antiviral Activity and Protein-Ligand X-ray Structural Studies. ChemMedChem. 2019; 14(21):1863-1872.
PMC: 6842059.
DOI: 10.1002/cmdc.201900508.
View
9.
Ghosh A, Ramu Sridhar P, Kumaragurubaran N, Koh Y, Weber I, Mitsuya H
. Bis-tetrahydrofuran: a privileged ligand for darunavir and a new generation of hiv protease inhibitors that combat drug resistance. ChemMedChem. 2006; 1(9):939-50.
DOI: 10.1002/cmdc.200600103.
View
10.
Curran A, Ribera Pascuet E
. [Darunavir as first-line therapy. The TITAN study]. Enferm Infecc Microbiol Clin. 2009; 26 Suppl 10:14-22.
DOI: 10.1016/s0213-005x(08)76549-2.
View
11.
Ghosh A, Anderson D, Weber I, Mitsuya H
. Enhancing protein backbone binding--a fruitful concept for combating drug-resistant HIV. Angew Chem Int Ed Engl. 2012; 51(8):1778-802.
PMC: 7159617.
DOI: 10.1002/anie.201102762.
View
12.
Iyer A, Reis R, Agniswamy J, Weber I, Gadda G
. Discovery of a new flavin N5-adduct in a tyrosine to phenylalanine variant of d-Arginine dehydrogenase. Arch Biochem Biophys. 2021; 715:109100.
DOI: 10.1016/j.abb.2021.109100.
View
13.
Koh Y, Matsumi S, Das D, Amano M, Davis D, Li J
. Potent inhibition of HIV-1 replication by novel non-peptidyl small molecule inhibitors of protease dimerization. J Biol Chem. 2007; 282(39):28709-28720.
DOI: 10.1074/jbc.M703938200.
View
14.
De Meyer S, Lathouwers E, Dierynck I, De Paepe E, Van Baelen B, Vangeneugden T
. Characterization of virologic failure patients on darunavir/ritonavir in treatment-experienced patients. AIDS. 2009; 23(14):1829-40.
DOI: 10.1097/QAD.0b013e32832cbcec.
View
15.
Kovalevsky A, Liu F, Leshchenko S, Ghosh A, Louis J, Harrison R
. Ultra-high resolution crystal structure of HIV-1 protease mutant reveals two binding sites for clinical inhibitor TMC114. J Mol Biol. 2006; 363(1):161-73.
PMC: 1781337.
DOI: 10.1016/j.jmb.2006.08.007.
View
16.
Este J, Cihlar T
. Current status and challenges of antiretroviral research and therapy. Antiviral Res. 2009; 85(1):25-33.
DOI: 10.1016/j.antiviral.2009.10.007.
View
17.
TOTH M, Marshall G
. A simple, continuous fluorometric assay for HIV protease. Int J Pept Protein Res. 1990; 36(6):544-50.
DOI: 10.1111/j.1399-3011.1990.tb00994.x.
View
18.
Tang M, Shafer R
. HIV-1 antiretroviral resistance: scientific principles and clinical applications. Drugs. 2012; 72(9):e1-25.
PMC: 3689909.
DOI: 10.2165/11633630-000000000-00000.
View
19.
Dieffenbach C, Fauci A
. Thirty years of HIV and AIDS: future challenges and opportunities. Ann Intern Med. 2011; 154(11):766-71.
DOI: 10.7326/0003-4819-154-11-201106070-00345.
View
20.
De Meyer S, Azijn H, Surleraux D, Jochmans D, Tahri A, Pauwels R
. TMC114, a novel human immunodeficiency virus type 1 protease inhibitor active against protease inhibitor-resistant viruses, including a broad range of clinical isolates. Antimicrob Agents Chemother. 2005; 49(6):2314-21.
PMC: 1140553.
DOI: 10.1128/AAC.49.6.2314-2321.2005.
View