» Articles » PMID: 36732526

A High-resolution Gridded Grazing Dataset of Grassland Ecosystem on the Qinghai-Tibet Plateau in 1982-2015

Overview
Journal Sci Data
Specialty Science
Date 2023 Feb 2
PMID 36732526
Authors
Affiliations
Soon will be listed here.
Abstract

Grazing intensity, characterized by high spatial heterogeneity, is a vital parameter to accurately depict human disturbance and its effects on grassland ecosystems. Grazing census data provide useful county-scale information; however, they do not accurately delineate spatial heterogeneity within counties, and a high-resolution dataset is urgently needed. Therefore, we built a methodological framework combining the cross-scale feature extraction method and a random forest model to spatialize census data after fully considering four features affecting grazing, and produced a high-resolution gridded grazing dataset on the Qinghai-Tibet Plateau in 1982-2015. The proposed method (R = 0.80) exhibited 35.59% higher accuracy than the traditional method. Our dataset were highly consistent with census data (R of spatial accuracy = 0.96, NSE of temporal accuracy = 0.96) and field data (R of spatial accuracy = 0.77). Compared with public datasets, our dataset featured a higher temporal resolution (1982-2015) and spatial resolution (over two times higher). Thus, it has the potential to elucidate the spatiotemporal variation in human activities and guide the sustainable management of grassland ecosystem.

Citing Articles

A long-term high-resolution dataset of grasslands grazing intensity in China.

Wang D, Peng Q, Li X, Zhang W, Xia X, Qin Z Sci Data. 2024; 11(1):1194.

PMID: 39500911 PMC: 11538541. DOI: 10.1038/s41597-024-04045-x.


Major distribution shifts are projected for key rangeland grasses under a high-emission scenario in East Africa at the end of the 21 century.

Messmer M, Eckert S, Torre-Marin Rando A, Snethlage M, Gonzalez-Roji S, Hurni K Commun Earth Environ. 2024; 5(1):600.

PMID: 39430422 PMC: 11486655. DOI: 10.1038/s43247-024-01731-x.


Mapping livestock density distribution in the Selenge River Basin of Mongolia using random forest.

Liu Y, Wang J, Yang K, Ochir A Sci Rep. 2024; 14(1):11090.

PMID: 38750227 PMC: 11096379. DOI: 10.1038/s41598-024-61959-7.


Gridded livestock density database and spatial trends for Kazakhstan.

Kolluru V, John R, Saraf S, Chen J, Hankerson B, Robinson S Sci Data. 2023; 10(1):839.

PMID: 38030700 PMC: 10687097. DOI: 10.1038/s41597-023-02736-5.


A high-resolution gridded grazing dataset of grassland ecosystem on the Qinghai-Tibet Plateau in 1982-2015.

Meng N, Wang L, Qi W, Dai X, Li Z, Yang Y Sci Data. 2023; 10(1):68.

PMID: 36732526 PMC: 9895079. DOI: 10.1038/s41597-023-01970-1.

References
1.
OMara F . The role of grasslands in food security and climate change. Ann Bot. 2012; 110(6):1263-70. PMC: 3478061. DOI: 10.1093/aob/mcs209. View

2.
Gaughan A, Stevens F, Huang Z, Nieves J, Sorichetta A, Lai S . Spatiotemporal patterns of population in mainland China, 1990 to 2010. Sci Data. 2016; 3:160005. PMC: 4755125. DOI: 10.1038/sdata.2016.5. View

3.
Ganskopp D . Manipulating cattle distribution with salt and water in large arid-land pastures: a GPS/GIS assessment. Appl Anim Behav Sci. 2001; 73(4):251-262. DOI: 10.1016/s0168-1591(01)00148-4. View

4.
Nicolas G, Robinson T, Wint G, Conchedda G, Cinardi G, Gilbert M . Using Random Forest to Improve the Downscaling of Global Livestock Census Data. PLoS One. 2016; 11(3):e0150424. PMC: 4792414. DOI: 10.1371/journal.pone.0150424. View

5.
Gilbert M, Nicolas G, Cinardi G, Van Boeckel T, Vanwambeke S, Wint G . Global distribution data for cattle, buffaloes, horses, sheep, goats, pigs, chickens and ducks in 2010. Sci Data. 2018; 5:180227. PMC: 6207061. DOI: 10.1038/sdata.2018.227. View