» Articles » PMID: 36730206

The SspB Adaptor Drives Structural Changes in the AAA+ ClpXP Protease During SsrA-tagged Substrate Delivery

Overview
Specialty Science
Date 2023 Feb 2
PMID 36730206
Authors
Affiliations
Soon will be listed here.
Abstract

Energy-dependent protein degradation by the AAA+ ClpXP protease helps maintain protein homeostasis in bacteria and eukaryotic organelles of bacterial origin. In  and many other proteobacteria, the SspB adaptor assists ClpXP in degrading ssrA-tagged polypeptides produced as a consequence of tmRNA-mediated ribosome rescue. By tethering these incomplete ssrA-tagged proteins to ClpXP, SspB facilitates their efficient degradation at low substrate concentrations. How this process occurs structurally is unknown. Here, we present a cryo-EM structure of the SspB adaptor bound to a GFP-ssrA substrate and to ClpXP. This structure provides evidence for simultaneous contacts of SspB and ClpX with the ssrA tag within the tethering complex, allowing direct substrate handoff concomitant with the initiation of substrate translocation. Furthermore, our structure reveals that binding of the substrate·adaptor complex induces unexpected conformational changes within the spiral structure of the AAA+ ClpX hexamer and its interaction with the ClpP tetradecamer.

Citing Articles

Serine phosphorylation facilitates protein degradation by the human mitochondrial ClpXP protease.

Feng Y, Goncalves M, Jitkova Y, Keszei A, Yan Y, Sarathy C Proc Natl Acad Sci U S A. 2025; 122(5):e2422447122.

PMID: 39879245 PMC: 11804671. DOI: 10.1073/pnas.2422447122.


Cryo-EM structures of human ClpXP reveal mechanisms of assembly and proteolytic activation.

Chen W, Yang J, Lander G bioRxiv. 2024; .

PMID: 39605471 PMC: 11601447. DOI: 10.1101/2024.11.12.623337.


A proteolytic AAA+ machine poised to unfold protein substrates.

Ghanbarpour A, Sauer R, Davis J Nat Commun. 2024; 15(1):9681.

PMID: 39516482 PMC: 11549327. DOI: 10.1038/s41467-024-53681-9.


Protein degradation by a component of the chaperonin-linked protease ClpP.

Ishikawa F, Homma M, Tanabe G, Uchihashi T Genes Cells. 2024; 29(9):695-709.

PMID: 38965067 PMC: 11448347. DOI: 10.1111/gtc.13141.


Dual function of LapB (YciM) in regulating lipopolysaccharide synthesis.

Shu S, Tsutsui Y, Nathawat R, Mi W Proc Natl Acad Sci U S A. 2024; 121(17):e2321510121.

PMID: 38635633 PMC: 11046580. DOI: 10.1073/pnas.2321510121.


References
1.
Flynn J, Levchenko I, Seidel M, Wickner S, Sauer R, Baker T . Overlapping recognition determinants within the ssrA degradation tag allow modulation of proteolysis. Proc Natl Acad Sci U S A. 2001; 98(19):10584-9. PMC: 58509. DOI: 10.1073/pnas.191375298. View

2.
Hersch G, Baker T, Sauer R . SspB delivery of substrates for ClpXP proteolysis probed by the design of improved degradation tags. Proc Natl Acad Sci U S A. 2004; 101(33):12136-41. PMC: 514447. DOI: 10.1073/pnas.0404733101. View

3.
Martin A, Baker T, Sauer R . Diverse pore loops of the AAA+ ClpX machine mediate unassisted and adaptor-dependent recognition of ssrA-tagged substrates. Mol Cell. 2008; 29(4):441-50. PMC: 2323458. DOI: 10.1016/j.molcel.2008.02.002. View

4.
Keiler K, Waller P, Sauer R . Role of a peptide tagging system in degradation of proteins synthesized from damaged messenger RNA. Science. 1996; 271(5251):990-3. DOI: 10.1126/science.271.5251.990. View

5.
Bolon D, Wah D, Hersch G, Baker T, Sauer R . Bivalent tethering of SspB to ClpXP is required for efficient substrate delivery: a protein-design study. Mol Cell. 2004; 13(3):443-9. DOI: 10.1016/s1097-2765(04)00027-9. View