» Articles » PMID: 36710255

Membrane Targeted Azobenzene Drives Optical Modulation of Bacterial Membrane Potential

Abstract

Recent studies have shown that bacterial membrane potential is dynamic and plays signaling roles. Yet, little is still known about the mechanisms of membrane potential dynamics regulation-owing to a scarcity of appropriate research tools. Optical modulation of bacterial membrane potential could fill this gap and provide a new approach for studying and controlling bacterial physiology and electrical signaling. Here, the authors show that a membrane-targeted azobenzene (Ziapin2) can be used to photo-modulate the membrane potential in cells of the Gram-positive bacterium Bacillus subtilis. It is found that upon exposure to blue-green light (λ = 470 nm), isomerization of Ziapin2 in the bacteria membrane induces hyperpolarization of the potential. To investigate the origin of this phenomenon, ion-channel-deletion strains and ion channel blockers are examined. The authors found that in presence of the chloride channel blocker idanyloxyacetic acid-94 (IAA-94) or in absence of KtrAB potassium transporter, the hyperpolarization response is attenuated. These results reveal that the Ziapin2 isomerization can induce ion channel opening in the bacterial membrane and suggest that Ziapin2 can be used for studying and controlling bacterial electrical signaling. This new optical tool could contribute to better understand various microbial phenomena, such as biofilm electric signaling and antimicrobial resistance.

Citing Articles

Membrane-targeted push-pull azobenzenes for the optical modulation of membrane potential.

Sesti V, Magni A, Moschetta M, Florindi C, Pfeffer M, DiFrancesco M Light Sci Appl. 2024; 14(1):8.

PMID: 39741143 PMC: 11688454. DOI: 10.1038/s41377-024-01669-x.


Role of stretch-activated channels in light-generated action potentials mediated by an intramembrane molecular photoswitch.

Florindi C, Vurro V, Moretti P, Bertarelli C, Zaza A, Lanzani G J Transl Med. 2024; 22(1):1068.

PMID: 39605022 PMC: 11600573. DOI: 10.1186/s12967-024-05902-4.


Modulation of Mechanosensitive Potassium Channels by a Membrane-targeted Nongenetic Photoswitch.

Moschetta M, Vurro V, Sesti V, Bertarelli C, Paterno G, Lanzani G J Phys Chem B. 2023; 127(41):8869-8878.

PMID: 37815392 PMC: 10591468. DOI: 10.1021/acs.jpcb.3c04551.


Informing the Cannabis Conjecture: From Life's Beginnings to Mitochondria, Membranes and the Electrome-A Review.

Nunn A, Guy G, Bell J Int J Mol Sci. 2023; 24(17).

PMID: 37685877 PMC: 10488084. DOI: 10.3390/ijms241713070.


Light-Based Anti-Biofilm and Antibacterial Strategies.

Kauser A, Parisini E, Suarato G, Castagna R Pharmaceutics. 2023; 15(8).

PMID: 37631320 PMC: 10457815. DOI: 10.3390/pharmaceutics15082106.


References
1.
Paoletti P, Ellis-Davies G, Mourot A . Optical control of neuronal ion channels and receptors. Nat Rev Neurosci. 2019; 20(9):514-532. PMC: 6703956. DOI: 10.1038/s41583-019-0197-2. View

2.
Jones J, Larkin J . Toward Bacterial Bioelectric Signal Transduction. Bioelectricity. 2021; 3(2):116-119. PMC: 8380937. DOI: 10.1089/bioe.2021.0013. View

3.
Prindle A, Liu J, Asally M, Ly S, Garcia-Ojalvo J, Suel G . Ion channels enable electrical communication in bacterial communities. Nature. 2015; 527(7576):59-63. PMC: 4890463. DOI: 10.1038/nature15709. View

4.
Liu J, Prindle A, Humphries J, Gabalda-Sagarra M, Asally M, Lee D . Metabolic co-dependence gives rise to collective oscillations within biofilms. Nature. 2015; 523(7562):550-4. PMC: 4862617. DOI: 10.1038/nature14660. View

5.
Stratford J, Edwards C, Ghanshyam M, Malyshev D, Delise M, Hayashi Y . Electrically induced bacterial membrane-potential dynamics correspond to cellular proliferation capacity. Proc Natl Acad Sci U S A. 2019; 116(19):9552-9557. PMC: 6511025. DOI: 10.1073/pnas.1901788116. View