» Articles » PMID: 36704199

Cyclin E Overexpression in the Accessory Gland Induces Tissue Dysplasia

Overview
Specialty Cell Biology
Date 2023 Jan 27
PMID 36704199
Authors
Affiliations
Soon will be listed here.
Abstract

The regulation of the cell division cycle is governed by a complex network of factors that together ensure that growing or proliferating cells maintain a stable genome. Defects in this system can lead to genomic instability that can affect tissue homeostasis and thus compromise human health. Variations in ploidy and cell heterogeneity are observed frequently in human cancers. Here, we examine the consequences of upregulating the cell cycle regulator Cyclin E in the male accessory gland. The accessory gland is the functional analog of the human prostate. This organ is composed of a postmitotic epithelium that is emerging as a powerful system for modelling different aspects of tumor initiation and progression. We show that Cyclin E upregulation in this model is sufficient to drive tissue dysplasia. Cyclin E overexpression drives endoreplication and affects DNA integrity, which results in heterogeneous nuclear and cellular composition and variable degrees of DNA damage. We present evidence showing that, despite the presence of genotoxic stress, those cells are resistant to apoptosis and thus defective cells are not eliminated from the tissue. We also show that Cyclin E-expressing cells in the accessory gland display mitochondrial DNA aggregates that colocalize with Cyclin E protein. Together, the findings presented here show that Cyclin E upregulation in postmitotic cells of the accessory gland organ causes cellular defects such as genomic instability and mitochondrial defects, eventually leading to tissue dysplasia. This study highlights novel mechanisms by which Cyclin E might contribute to disease initiation and progression.

Citing Articles

Cholesterol Dietary Intake and Tumor Cell Homeostasis Drive Early Epithelial Tumorigenesis: A Potential Modelization of Early Prostate Tumorigenesis.

Vialat M, Baabdaty E, Trousson A, Kocer A, Lobaccaro J, Baron S Cancers (Basel). 2024; 16(11).

PMID: 38893271 PMC: 11172085. DOI: 10.3390/cancers16112153.


Oncogenic signaling in the adult prostate-like accessory gland leads to activation of a conserved pro-tumorigenic program, in the absence of proliferation.

Church S, Pulianmackal A, Dixon J, Loftus L, Amend S, Pienta K bioRxiv. 2024; .

PMID: 38853988 PMC: 11160766. DOI: 10.1101/2024.05.10.593549.


Editorial: Regulation and coordination of the different DNA damage responses and their role in tissue homeostasis maintenance.

Baena-Lopez L, Baonza A, Estella C, Herranz H Front Cell Dev Biol. 2023; 11:1175155.

PMID: 36994105 PMC: 10042383. DOI: 10.3389/fcell.2023.1175155.

References
1.
Kanki T, Ohgaki K, Gaspari M, Gustafsson C, Fukuoh A, Sasaki N . Architectural role of mitochondrial transcription factor A in maintenance of human mitochondrial DNA. Mol Cell Biol. 2004; 24(22):9823-34. PMC: 525493. DOI: 10.1128/MCB.24.22.9823-9834.2004. View

2.
Gerlach S, Eichenlaub T, Herranz H . Yorkie and JNK Control Tumorigenesis in Drosophila Cells with Cytokinesis Failure. Cell Rep. 2018; 23(5):1491-1503. DOI: 10.1016/j.celrep.2018.04.006. View

3.
Nicholls T, Gustafsson C . Separating and Segregating the Human Mitochondrial Genome. Trends Biochem Sci. 2018; 43(11):869-881. DOI: 10.1016/j.tibs.2018.08.007. View

4.
Macheret M, Halazonetis T . DNA replication stress as a hallmark of cancer. Annu Rev Pathol. 2015; 10:425-48. DOI: 10.1146/annurev-pathol-012414-040424. View

5.
Bilder D . Epithelial polarity and proliferation control: links from the Drosophila neoplastic tumor suppressors. Genes Dev. 2004; 18(16):1909-25. DOI: 10.1101/gad.1211604. View