Unraveling the Energetic Significance of Chemical Events in Enzyme Catalysis Via Machine-learning Based Regression Approach
Overview
Authors
Affiliations
The bacterial enzyme class of β-lactamases are involved in benzylpenicillin acylation reactions, which are currently being revisited using hybrid quantum mechanical molecular mechanical (QM/MM) chain-of-states pathway optimizations. Minimum energy pathways are sampled by reoptimizing pathway geometry under different representative protein environments obtained through constrained molecular dynamics simulations. Predictive potential energy surface models in the reaction space are trained with machine-learning regression techniques. Herein, using TEM-1/benzylpenicillin acylation reaction as the model system, we introduce two model-independent criteria for delineating the energetic contributions and correlations in the predicted reaction space. Both methods are demonstrated to effectively quantify the energetic contribution of each chemical process and identify the rate limiting step of enzymatic reaction with high degrees of freedom. The consistency of the current workflow is tested under seven levels of quantum chemistry theory and three non-linear machine-learning regression models. The proposed approaches are validated to provide qualitative compliance with experimental mutagenesis studies.
Jayasekara S, Joni H, Jayantha B, Dissanayake L, Mandrell C, Sinharage M Comput Struct Biotechnol J. 2023; 21:3513-3521.
PMID: 37484494 PMC: 10362282. DOI: 10.1016/j.csbj.2023.06.004.
Zhu J, Zhang N, Wei T, Chen H Int J Mol Sci. 2023; 24(8).
PMID: 37108059 PMC: 10138423. DOI: 10.3390/ijms24086896.
Yin C, Song Z, Tian H, Palzkill T, Tao P Phys Chem Chem Phys. 2022; 25(2):1349-1362.
PMID: 36537692 PMC: 11162551. DOI: 10.1039/d2cp03724f.
ADMETboost: a web server for accurate ADMET prediction.
Tian H, Ketkar R, Tao P J Mol Model. 2022; 28(12):408.
PMID: 36454321 PMC: 9903341. DOI: 10.1007/s00894-022-05373-8.
Song Z, Trozzi F, Tian H, Yin C, Tao P ACS Phys Chem Au. 2022; 2(4):316-330.
PMID: 35936506 PMC: 9344433. DOI: 10.1021/acsphyschemau.2c00005.