» Articles » PMID: 36454321

ADMETboost: a Web Server for Accurate ADMET Prediction

Overview
Journal J Mol Model
Publisher Springer
Specialty Molecular Biology
Date 2022 Dec 1
PMID 36454321
Authors
Affiliations
Soon will be listed here.
Abstract

The absorption, distribution, metabolism, excretion, and toxicity (ADMET) properties are important in drug discovery as they define efficacy and safety. In this work, we applied an ensemble of features, including fingerprints and descriptors, and a tree-based machine learning model, extreme gradient boosting, for accurate ADMET prediction. Our model performs well in the Therapeutics Data Commons ADMET benchmark group. For 22 tasks, our model is ranked first in 18 tasks and top 3 in 21 tasks. The trained machine learning models are integrated in ADMETboost, a web server that is publicly available at https://ai-druglab.smu.edu/admet .

Citing Articles

Comparison of new secondgeneration H1 receptor blockers with some molecules; a study involving DFT, molecular docking, ADMET, biological target and activity.

Unsal V, Oner E, Yildiz R, Mert B BMC Chem. 2025; 19(1):4.

PMID: 39755645 PMC: 11700471. DOI: 10.1186/s13065-024-01371-4.


cidalsDB: an AI-empowered platform for anti-pathogen therapeutics research.

Harigua-Souiai E, Masmoudi O, Makni S, Oualha R, Abdelkrim Y, Hamdi S J Cheminform. 2024; 16(1):134.

PMID: 39609715 PMC: 11605991. DOI: 10.1186/s13321-024-00929-7.


MolE: a foundation model for molecular graphs using disentangled attention.

Mendez-Lucio O, Nicolaou C, Earnshaw B Nat Commun. 2024; 15(1):9431.

PMID: 39532853 PMC: 11557931. DOI: 10.1038/s41467-024-53751-y.


3-Alkoxy-1-Benzyl-5-Nitroindazole Derivatives Are Potent Antileishmanial Compounds.

Mollineda-Diogo N, Sifontes-Rodriguez S, Aguirre-Garcia M, Escalona-Montano A, Espinosa-Buitrago T, Mondragon-Flores R Int J Mol Sci. 2024; 25(19).

PMID: 39408911 PMC: 11477194. DOI: 10.3390/ijms251910582.


In silico analysis of balsaminol as anti-viral agents targeting SARS-CoV-2 main protease, spike receptor binding domain and papain-like protease receptors.

Gaiya D, Muhammad A, Musa J, Auta R, Dadah A, Bello R In Silico Pharmacol. 2024; 12(2):75.

PMID: 39155972 PMC: 11329488. DOI: 10.1007/s40203-024-00241-0.


References
1.
Venkatraman V . FP-ADMET: a compendium of fingerprint-based ADMET prediction models. J Cheminform. 2021; 13(1):75. PMC: 8479898. DOI: 10.1186/s13321-021-00557-5. View

2.
Tian H, Jiang X, Tao P . PASSer: Prediction of Allosteric Sites Server. Mach Learn Sci Technol. 2021; 2(3). PMC: 8360383. DOI: 10.1088/2632-2153/abe6d6. View

3.
Kola I, Landis J . Can the pharmaceutical industry reduce attrition rates?. Nat Rev Drug Discov. 2004; 3(8):711-5. DOI: 10.1038/nrd1470. View

4.
Song Z, Zhou H, Tian H, Wang X, Tao P . Unraveling the energetic significance of chemical events in enzyme catalysis via machine-learning based regression approach. Commun Chem. 2023; 3(1):134. PMC: 9814854. DOI: 10.1038/s42004-020-00379-w. View

5.
Jaeger S, Fulle S, Turk S . Mol2vec: Unsupervised Machine Learning Approach with Chemical Intuition. J Chem Inf Model. 2017; 58(1):27-35. DOI: 10.1021/acs.jcim.7b00616. View