» Articles » PMID: 36701641

Dioxygen Binding Is Controlled by the Protein Environment in Non-heme Fe and 2-Oxoglutarate Oxygenases: A Study on Histone Demethylase PHF8 and an Ethylene-Forming Enzyme

Abstract

This study investigates dioxygen binding and 2-oxoglutarate (2OG) coordination by two model non-heme Fe /2OG enzymes: a class 7 histone demethylase (PHF8) that catalyzes the hydroxylation of its H3K9me2 histone substrate leading to demethylation reactivity and the ethylene-forming enzyme (EFE), which catalyzes two competing reactions of ethylene generation and substrate l-Arg hydroxylation. Although both enzymes initially bind 2OG by using an off-line 2OG coordination mode, in PHF8, the substrate oxidation requires a transition to an in-line mode, whereas EFE is catalytically productive for ethylene production from 2OG in the off-line mode. We used classical molecular dynamics (MD), quantum mechanics/molecular mechanics (QM/MM) MD and QM/MM metadynamics (QM/MM-MetD) simulations to reveal that it is the dioxygen binding process and, ultimately, the protein environment that control the formation of the in-line Fe -OO⋅ intermediate in PHF8 and the off-line Fe -OO⋅ intermediate in EFE.

Citing Articles

How Do Variants of Residues in the First Coordination Sphere, Second Coordination Sphere, and Remote Areas Influence the Catalytic Mechanism of Non-Heme Fe(II)/2-Oxoglutarate Dependent Ethylene-Forming Enzyme?.

Thomas M, Rifayee S, Christov C ACS Catal. 2024; 14(24):18550-18569.

PMID: 39722885 PMC: 11668244. DOI: 10.1021/acscatal.4c04010.


PHF8/KDM7B: A Versatile Histone Demethylase and Epigenetic Modifier in Nervous System Disease and Cancers.

Fan T, Xie J, Huang G, Li L, Zeng X, Tao Q Epigenomes. 2024; 8(3).

PMID: 39311138 PMC: 11417953. DOI: 10.3390/epigenomes8030036.


The Unique Role of the Second Coordination Sphere to Unlock and Control Catalysis in Nonheme Fe(II)/2-Oxoglutarate Histone Demethylase KDM2A.

Thomas M, Rifayee S, Chaturvedi S, Gorantla K, White W, Wildey J Inorg Chem. 2024; 63(23):10737-10755.

PMID: 38781256 PMC: 11168414. DOI: 10.1021/acs.inorgchem.4c01365.


Biological formation of ethylene.

Hausinger R, J S Rifayee S, Thomas M, Chatterjee S, Hu J, Christov C RSC Chem Biol. 2023; 4(9):635-646.

PMID: 37654506 PMC: 10467617. DOI: 10.1039/d3cb00066d.

References
1.
Zhang Z, Ren J, Harlos K, McKinnon C, Clifton I, Schofield C . Crystal structure of a clavaminate synthase-Fe(II)-2-oxoglutarate-substrate-NO complex: evidence for metal centered rearrangements. FEBS Lett. 2002; 517(1-3):7-12. DOI: 10.1016/s0014-5793(02)02520-6. View

2.
Goedecker , Teter , HUTTER . Separable dual-space Gaussian pseudopotentials. Phys Rev B Condens Matter. 1996; 54(3):1703-1710. DOI: 10.1103/physrevb.54.1703. View

3.
Zhang Z, Smart T, Choi H, Hardy F, Lohans C, Abboud M . Structural and stereoelectronic insights into oxygenase-catalyzed formation of ethylene from 2-oxoglutarate. Proc Natl Acad Sci U S A. 2017; 114(18):4667-4672. PMC: 5422762. DOI: 10.1073/pnas.1617760114. View

4.
Horton J, Upadhyay A, Qi H, Zhang X, Shi Y, Cheng X . Enzymatic and structural insights for substrate specificity of a family of jumonji histone lysine demethylases. Nat Struct Mol Biol. 2009; 17(1):38-43. PMC: 2849977. DOI: 10.1038/nsmb.1753. View

5.
Domene C, Jorgensen C, Schofield C . Mechanism of Molecular Oxygen Diffusion in a Hypoxia-Sensing Prolyl Hydroxylase Using Multiscale Simulation. J Am Chem Soc. 2020; 142(5):2253-2263. DOI: 10.1021/jacs.9b09236. View