» Articles » PMID: 36697781

Structural Identification of N-glycan Isomers Using Logically Derived Sequence Tandem Mass Spectrometry

Overview
Journal Commun Chem
Publisher Springer Nature
Specialty Chemistry
Date 2023 Jan 25
PMID 36697781
Authors
Affiliations
Soon will be listed here.
Abstract

N-linked glycosylation is one of the most important protein post-translational modifications. Despite the importance of N-glycans, the structural determination of N-glycan isomers remains challenging. Here we develop a mass spectrometry method, logically derived sequence tandem mass spectrometry (LODES/MS), to determine the structures of N-glycan isomers that cannot be determined using conventional mass spectrometry. In LODES/MS, the sequences of successive collision-induced dissociation are derived from carbohydrate dissociation mechanisms and apply to N-glycans in an ion trap for structural determination. We validate LODES/MS using synthesized N-glycans and subsequently applied this method to N-glycans extracted from soybean, ovalbumin, and IgY. Our method does not require permethylation, reduction, and labeling of N-glycans, or the mass spectrum databases of oligosaccharides and N-glycan standards. Moreover, it can be applied to all types of N-glycans (high-mannose, hybrid, and complex), as well as the N-glycans degraded from larger N-glycans by any enzyme or acid hydrolysis.

Citing Articles

Glycan mixture analysis by kernel component composition for matrix factorization.

Hong P, Xia C, Tang Y, Wei J, Lin C Anal Bioanal Chem. 2025; .

PMID: 39939417 DOI: 10.1007/s00216-025-05777-4.


Unusual free trisaccharides in caprine colostrum discovered by logically derived sequence tandem mass spectrometry.

Weng W, Liao H, Chang C, Hung S, Du K, Tu Z Sci Rep. 2025; 15(1):1586.

PMID: 39794344 PMC: 11724002. DOI: 10.1038/s41598-024-81561-1.


High Abundance of Unusual High Mannose -Glycans Found in Beans.

Liew C, Luo H, Chen J, Ni C ACS Omega. 2024; 9(46):45822-45827.

PMID: 39583691 PMC: 11579719. DOI: 10.1021/acsomega.4c04114.


Maximizing Glycoproteomics Results through an Integrated Parallel Accumulation Serial Fragmentation Workflow.

Baerenfaenger M, Post M, Zijlstra F, van Gool A, Lefeber D, Wessels H Anal Chem. 2024; 96(22):8956-8964.

PMID: 38776126 PMC: 11154686. DOI: 10.1021/acs.analchem.3c05874.


Collision-Induced Dissociation of Fucose and Identification of Anomericity.

Nguan H, Chen J, Ni C J Phys Chem A. 2024; 128(19):3812-3820.

PMID: 38690855 PMC: 11103703. DOI: 10.1021/acs.jpca.4c00640.


References
1.
Tsai S, Chen J, Ni C . Does low-energy collision-induced dissociation of lithiated and sodiated carbohydrates always occur at anomeric carbon of the reducing end?. Rapid Commun Mass Spectrom. 2017; 31(21):1835-1844. DOI: 10.1002/rcm.7961. View

2.
Song T, Aldredge D, Lebrilla C . A Method for In-Depth Structural Annotation of Human Serum Glycans That Yields Biological Variations. Anal Chem. 2015; 87(15):7754-62. PMC: 5444872. DOI: 10.1021/acs.analchem.5b01340. View

3.
Harvey D . Electrospray mass spectrometry and fragmentation of N-linked carbohydrates derivatized at the reducing terminus. J Am Soc Mass Spectrom. 2000; 11(10):900-15. DOI: 10.1016/S1044-0305(00)00156-2. View

4.
Gilgunn S, Millan Martin S, Wormald M, Zapatero-Rodriguez J, Conroy P, OKennedy R . Comprehensive N-Glycan Profiling of Avian Immunoglobulin Y. PLoS One. 2016; 11(7):e0159859. PMC: 4961449. DOI: 10.1371/journal.pone.0159859. View

5.
Morimoto K, Nishikaze T, Yoshizawa A, Kajihara S, Aoshima K, Oda Y . GlycanAnalysis Plug-in: a database search tool for N-glycan structures using mass spectrometry. Bioinformatics. 2015; 31(13):2217-9. DOI: 10.1093/bioinformatics/btv110. View