» Articles » PMID: 36697714

Evaluating the Use of Absolute Binding Free Energy in the Fragment Optimisation Process

Overview
Journal Commun Chem
Publisher Springer Nature
Specialty Chemistry
Date 2023 Jan 25
PMID 36697714
Authors
Affiliations
Soon will be listed here.
Abstract

Key to the fragment optimisation process within drug design is the need to accurately capture the changes in affinity that are associated with a given set of chemical modifications. Due to the weakly binding nature of fragments, this has proven to be a challenging task, despite recent advancements in leveraging experimental and computational methods. In this work, we evaluate the use of Absolute Binding Free Energy (ABFE) calculations in guiding fragment optimisation decisions, retrospectively calculating binding free energies for 59 ligands across 4 fragment elaboration campaigns. We first demonstrate that ABFEs can be used to accurately rank fragment-sized binders with an overall Spearman's r of 0.89 and a Kendall τ of 0.67, although often deviating from experiment in absolute free energy values with an RMSE of 2.75 kcal/mol. We then also show that in several cases, retrospective fragment optimisation decisions can be supported by the ABFE calculations. Comparing against cheaper endpoint methods, namely N-MM/GBSA, we find that ABFEs offer better ranking power and correlation metrics. Our results indicate that ABFE calculations can usefully guide fragment elaborations to maximise affinity.

Citing Articles

Robust protein-ligand interaction modeling through integrating physical laws and geometric knowledge for absolute binding free energy calculation.

Su Q, Wang J, Gou Q, Hu R, Jiang L, Zhang H Chem Sci. 2025; .

PMID: 40007661 PMC: 11848741. DOI: 10.1039/d4sc07405j.


Structural insights into tecovirimat antiviral activity and poxvirus resistance.

Vernuccio R, Martinez Leon A, Poojari C, Buchrieser J, Selverian C, Jaleta Y Nat Microbiol. 2025; 10(3):734-748.

PMID: 39939832 PMC: 11879855. DOI: 10.1038/s41564-025-01936-6.


Adaptive Lambda Scheduling: A Method for Computational Efficiency in Free Energy Perturbation Simulations.

Midgley S, Bariami S, Habgood M, Mackey M J Chem Inf Model. 2025; 65(2):512-516.

PMID: 39786727 PMC: 11776047. DOI: 10.1021/acs.jcim.4c01668.


Partially Sulfated Pillar[5]Arenes: Synthesis and Molecular Recognition Properties.

Goswami A, Cinaroglu S, Singh N, Zavalij P, Mobley D, Isaacs L Chemistry. 2024; 31(9):e202404024.

PMID: 39614802 PMC: 11821437. DOI: 10.1002/chem.202404024.


Konnektor: A Framework for Using Graph Theory to Plan Networks for Free Energy Calculations.

Ries B, Gowers R, Baumann H, Swenson D, Henry M, Eastwood J J Chem Inf Model. 2024; 64(22):8396-8403.

PMID: 39501568 PMC: 11812579. DOI: 10.1021/acs.jcim.4c01710.


References
1.
Hopkins C, Le Grand S, Walker R, Roitberg A . Long-Time-Step Molecular Dynamics through Hydrogen Mass Repartitioning. J Chem Theory Comput. 2015; 11(4):1864-74. DOI: 10.1021/ct5010406. View

2.
le Maire A, Gelin M, Pochet S, Hoh F, Pirocchi M, Guichou J . In-plate protein crystallization, in situ ligand soaking and X-ray diffraction. Acta Crystallogr D Biol Crystallogr. 2011; 67(Pt 9):747-55. DOI: 10.1107/S0907444911023249. View

3.
Kaus J, Harder E, Lin T, Abel R, McCammon J, Wang L . How to deal with multiple binding poses in alchemical relative protein-ligand binding free energy calculations. J Chem Theory Comput. 2015; 11(6):2670-9. PMC: 4462751. DOI: 10.1021/acs.jctc.5b00214. View

4.
Bietz S, Urbaczek S, Schulz B, Rarey M . Protoss: a holistic approach to predict tautomers and protonation states in protein-ligand complexes. J Cheminform. 2014; 6:12. PMC: 4019353. DOI: 10.1186/1758-2946-6-12. View

5.
Bottcher J, Dilworth D, Reiser U, Neumuller R, Schleicher M, Petronczki M . Fragment-based discovery of a chemical probe for the PWWP1 domain of NSD3. Nat Chem Biol. 2019; 15(8):822-829. DOI: 10.1038/s41589-019-0310-x. View