» Articles » PMID: 36690742

Screening Cell-cell Communication in Spatial Transcriptomics Via Collective Optimal Transport

Overview
Journal Nat Methods
Date 2023 Jan 23
PMID 36690742
Authors
Affiliations
Soon will be listed here.
Abstract

Spatial transcriptomic technologies and spatially annotated single-cell RNA sequencing datasets provide unprecedented opportunities to dissect cell-cell communication (CCC). However, incorporation of the spatial information and complex biochemical processes required in the reconstruction of CCC remains a major challenge. Here, we present COMMOT (COMMunication analysis by Optimal Transport) to infer CCC in spatial transcriptomics, which accounts for the competition between different ligand and receptor species as well as spatial distances between cells. A collective optimal transport method is developed to handle complex molecular interactions and spatial constraints. Furthermore, we introduce downstream analysis tools to infer spatial signaling directionality and genes regulated by signaling using machine learning models. We apply COMMOT to simulation data and eight spatial datasets acquired with five different technologies to show its effectiveness and robustness in identifying spatial CCC in data with varying spatial resolutions and gene coverages. Finally, COMMOT identifies new CCCs during skin morphogenesis in a case study of human epidermal development.

Citing Articles

Quantifying and interpreting biologically meaningful spatial signatures within tumor microenvironments.

Jing S, Wang H, Lin P, Yuan J, Tang Z, Li H NPJ Precis Oncol. 2025; 9(1):68.

PMID: 40069556 PMC: 11897387. DOI: 10.1038/s41698-025-00857-1.


Spatiotemporally resolved transcriptomics reveals the cellular dynamics of human retinal development.

Zhang J, Wang J, Zhou Q, Chen Z, Zhuang J, Zhao X Nat Commun. 2025; 16(1):2307.

PMID: 40055379 PMC: 11889126. DOI: 10.1038/s41467-025-57625-9.


Randomized Spatial PCA (RASP): a computationally efficient method for dimensionality reduction of high-resolution spatial transcriptomics data.

Gingerich I, Goods B, Frost H Res Sq. 2025; .

PMID: 40034439 PMC: 11875318. DOI: 10.21203/rs.3.rs-6050441/v1.


STModule: identifying tissue modules to uncover spatial components and characteristics of transcriptomic landscapes.

Wang R, Qian Y, Guo X, Song F, Xiong Z, Cai S Genome Med. 2025; 17(1):18.

PMID: 40033360 PMC: 11874447. DOI: 10.1186/s13073-025-01441-9.


From morphology to single-cell molecules: high-resolution 3D histology in biomedicine.

Xu X, Su J, Zhu R, Li K, Zhao X, Fan J Mol Cancer. 2025; 24(1):63.

PMID: 40033282 PMC: 11874780. DOI: 10.1186/s12943-025-02240-x.


References
1.
Rao A, Barkley D, Franca G, Yanai I . Exploring tissue architecture using spatial transcriptomics. Nature. 2021; 596(7871):211-220. PMC: 8475179. DOI: 10.1038/s41586-021-03634-9. View

2.
Mou H, Vinarsky V, Tata P, Brazauskas K, Choi S, Crooke A . Dual SMAD Signaling Inhibition Enables Long-Term Expansion of Diverse Epithelial Basal Cells. Cell Stem Cell. 2016; 19(2):217-231. PMC: 4975684. DOI: 10.1016/j.stem.2016.05.012. View

3.
Garcia-Alonso L, Handfield L, Roberts K, Nikolakopoulou K, Fernando R, Gardner L . Mapping the temporal and spatial dynamics of the human endometrium in vivo and in vitro. Nat Genet. 2021; 53(12):1698-1711. PMC: 8648563. DOI: 10.1038/s41588-021-00972-2. View

4.
Li Z, Wang T, Liu P, Huang Y . SpatialDM for rapid identification of spatially co-expressed ligand-receptor and revealing cell-cell communication patterns. Nat Commun. 2023; 14(1):3995. PMC: 10325966. DOI: 10.1038/s41467-023-39608-w. View

5.
Dries R, Zhu Q, Dong R, Eng C, Li H, Liu K . Giotto: a toolbox for integrative analysis and visualization of spatial expression data. Genome Biol. 2021; 22(1):78. PMC: 7938609. DOI: 10.1186/s13059-021-02286-2. View