» Articles » PMID: 36677243

Determining Spatial Variability of Elastic Properties for Biological Samples Using AFM

Overview
Publisher MDPI
Date 2023 Jan 21
PMID 36677243
Authors
Affiliations
Soon will be listed here.
Abstract

Measuring the mechanical properties (i.e., elasticity in terms of Young's modulus) of biological samples using Atomic Force Microscopy (AFM) indentation at the nanoscale has opened new horizons in studying and detecting various pathological conditions at early stages, including cancer and osteoarthritis. It is expected that AFM techniques will play a key role in the future in disease diagnosis and modeling using rigorous mathematical criteria (i.e., automated user-independent diagnosis). In this review, AFM techniques and mathematical models for determining the spatial variability of elastic properties of biological materials at the nanoscale are presented and discussed. Significant issues concerning the rationality of the elastic half-space assumption, the possibility of monitoring the depth-dependent mechanical properties, and the construction of 3D Young's modulus maps are also presented.

Citing Articles

Extracellular matrix in vascular homeostasis and disease.

Zhang L, Zhou J, Kong W Nat Rev Cardiol. 2025; .

PMID: 39743560 DOI: 10.1038/s41569-024-01103-0.


Investigation of dermal collagen nanostructures in Ehlers-Danlos Syndrome (EDS) patients.

Neshatian M, Mittal N, Huang S, Ali A, Khattignavong E, Bozec L PLoS One. 2024; 19(8):e0307442.

PMID: 39172992 PMC: 11341037. DOI: 10.1371/journal.pone.0307442.


Exploiting Matrix Stiffness to Overcome Drug Resistance.

Aydin H, Ozcelikkale A, Acar A ACS Biomater Sci Eng. 2024; 10(8):4682-4700.

PMID: 38967485 PMC: 11322920. DOI: 10.1021/acsbiomaterials.4c00445.


Atomic Force Microscopy Imaging of Elastin Nanofibers Self-Assembly.

Sambani K, Kontomaris S, Yova D Materials (Basel). 2023; 16(12).

PMID: 37374496 PMC: 10300809. DOI: 10.3390/ma16124313.


Measuring external primary cell wall elasticity of seedling roots using atomic force microscopy.

Kaur H, Teulon J, Foucher A, Fenel D, Chen S, Godon C STAR Protoc. 2023; 4(2):102265.

PMID: 37200196 PMC: 10206207. DOI: 10.1016/j.xpro.2023.102265.

References
1.
Kontomaris S, Yova D, Stylianou A, Balogiannis G . The effects of UV irradiation on collagen D-band revealed by atomic force microscopy. Scanning. 2014; 37(2):101-11. DOI: 10.1002/sca.21185. View

2.
Achterberg V, Buscemi L, Diekmann H, Smith-Clerc J, Schwengler H, Meister J . The nano-scale mechanical properties of the extracellular matrix regulate dermal fibroblast function. J Invest Dermatol. 2014; 134(7):1862-1872. DOI: 10.1038/jid.2014.90. View

3.
Raman A, Trigueros S, Cartagena A, Stevenson A, Susilo M, Nauman E . Mapping nanomechanical properties of live cells using multi-harmonic atomic force microscopy. Nat Nanotechnol. 2011; 6(12):809-14. DOI: 10.1038/nnano.2011.186. View

4.
Asgari M, Alderete N, Lin Z, Benavides R, Espinosa H . A matter of size? Material, structural and mechanical strategies for size adaptation in the elytra of Cetoniinae beetles. Acta Biomater. 2020; 122:236-248. DOI: 10.1016/j.actbio.2020.12.039. View

5.
Shroff S, Saner D, Lal R . Dynamic micromechanical properties of cultured rat atrial myocytes measured by atomic force microscopy. Am J Physiol. 1995; 269(1 Pt 1):C286-92. DOI: 10.1152/ajpcell.1995.269.1.C286. View