» Articles » PMID: 36648331

A Unified Mediation Analysis Framework for Integrative Cancer Proteogenomics with Clinical Outcomes

Overview
Journal Bioinformatics
Specialty Biology
Date 2023 Jan 17
PMID 36648331
Authors
Affiliations
Soon will be listed here.
Abstract

Motivation: Multilevel molecular profiling of tumors and the integrative analysis with clinical outcomes have enabled a deeper characterization of cancer treatment. Mediation analysis has emerged as a promising statistical tool to identify and quantify the intermediate mechanisms by which a gene affects an outcome. However, existing methods lack a unified approach to handle various types of outcome variables, making them unsuitable for high-throughput molecular profiling data with highly interconnected variables.

Results: We develop a general mediation analysis framework for proteogenomic data that include multiple exposures, multivariate mediators on various scales of effects as appropriate for continuous, binary and survival outcomes. Our estimation method avoids imposing constraints on model parameters such as the rare disease assumption, while accommodating multiple exposures and high-dimensional mediators. We compare our approach to other methods in extensive simulation studies at a range of sample sizes, disease prevalence and number of false mediators. Using kidney renal clear cell carcinoma proteogenomic data, we identify genes that are mediated by proteins and the underlying mechanisms on various survival outcomes that capture short- and long-term disease-specific clinical characteristics.

Availability And Implementation: Software is made available in an R package (https://github.com/longjp/mediateR).

Supplementary Information: Supplementary data are available at Bioinformatics online.

Citing Articles

A new framework for exploratory network mediator analysis in omics data.

Cai Q, Fu Y, Lyu C, Wang Z, Rao S, Alvarez J Genome Res. 2024; 34(4):642-654.

PMID: 38719472 PMC: 11146592. DOI: 10.1101/gr.278684.123.

References
1.
Barfield R, Shen J, Just A, Vokonas P, Schwartz J, Baccarelli A . Testing for the indirect effect under the null for genome-wide mediation analyses. Genet Epidemiol. 2017; 41(8):824-833. PMC: 5696067. DOI: 10.1002/gepi.22084. View

2.
Valeri L, Lin X, VanderWeele T . Mediation analysis when a continuous mediator is measured with error and the outcome follows a generalized linear model. Stat Med. 2014; 33(28):4875-90. PMC: 4224977. DOI: 10.1002/sim.6295. View

3.
Carracedo A, Ma L, Teruya-Feldstein J, Rojo F, Salmena L, Alimonti A . Inhibition of mTORC1 leads to MAPK pathway activation through a PI3K-dependent feedback loop in human cancer. J Clin Invest. 2008; 118(9):3065-74. PMC: 2518073. DOI: 10.1172/JCI34739. View

4.
Bhattacharyya R, Ha M, Liu Q, Akbani R, Liang H, Baladandayuthapani V . Personalized Network Modeling of the Pan-Cancer Patient and Cell Line Interactome. JCO Clin Cancer Inform. 2020; 4:399-411. PMC: 7265783. DOI: 10.1200/CCI.19.00140. View

5.
VanderWeele T, Vansteelandt S . Odds ratios for mediation analysis for a dichotomous outcome. Am J Epidemiol. 2010; 172(12):1339-48. PMC: 2998205. DOI: 10.1093/aje/kwq332. View